Strukturformel | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Allgemeines | |||||||||||||
Name | Petasis-Reagenz | ||||||||||||
Andere Namen |
| ||||||||||||
Summenformel | C12H16Ti | ||||||||||||
Kurzbeschreibung |
orangefarbene Flüssigkeit[1] | ||||||||||||
Externe Identifikatoren/Datenbanken | |||||||||||||
| |||||||||||||
Eigenschaften | |||||||||||||
Molare Masse | 208,13 g·mol−1 | ||||||||||||
Aggregatzustand |
flüssig | ||||||||||||
Löslichkeit | |||||||||||||
Sicherheitshinweise | |||||||||||||
| |||||||||||||
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen (0 °C, 1000 hPa). |
Bei dem Petasis-Reagenz handelt es sich um den Titankomplex Dimethyltitanocen. Es kann analog dem Tebbe-Reagenz zur Olefinierung von Ketonen, Aldehyden, Estern und Lactonen verwendet werden. Gegenüber dem Tebbe-Reagenz besitzt es den Vorteil der leichteren Herstellung und der höheren Stabilität. Des Weiteren erlaubt es auch die Einführung größerer Reste, während mit dem Tebbe-Reagenz nur eine Methenylierung möglich ist.[2]
Das Reagenz ist nach dem zyprisch-US-amerikanischen Chemiker Nicos A. Petasis (* 1954) benannt.
Die Herstellung des Petasis-Reagenz kann leicht aus Titanocendichlorid durch Substitution mit Methyllithium oder Methylmagnesiumchlorid bewerkstelligt werden.[3] Im Folgenden wird als Abkürzung für die Cyclopentadienyl-Liganden der auftretenden Komplexverbindungen die Abkürzung Cp verwendet.[4]
Das Petasis-Reagenz wird analog dem Tebbe-Reagenz verwendet. Wahrscheinlich wird auch als aktive Spezies das gleiche Schrock-Carben gebildet. Die Reaktion wird allerdings bei höherer Temperatur (60–80 °C) durchgeführt. Dies ist nötig um aus dem Titankomplex Methan abzuspalten und so einen Carbenkomplex zu bilden.[4]
Die Methylenierung verläuft analog der Reaktion mit der Tebbe-Reagenz: Das durch Methanabspaltung erhaltene Schrock-Carben addiert zunächst an die Carbonylkomponente unter Bildung eines Oxatitanacyclobutans. Nach Ringöffnung erhält man das methylenierte Produkt. Ähnlich wie im Falle des Phosphors bei der Wittig-Reaktion ist die Affinität von Titan zu Sauerstoff Triebkraft der Reaktion.
Verwendet wird das Petasis-Reagenz zur Methylenierung von Ketonen, Estern, Aldehyden und Lactonen. Besonders bei Carbonylfunktionen, die durch die Wittig-Reaktion nicht olefiniert werden können (z. B. Ester, Lactone), bietet das Petasis-Reagenz eine Alternative. Anders als beim Tebbe-Reagenz lassen sich auch in bedingtem Umfang größere Reste, wie zum Beispiel einen Benzylidenrest, einführen.