Reflexionsprinzip (Stochastik)

Das Reflexionsprinzip,[1] auch Spiegelungsprinzip[2] oder Reflektionsprinzip[3] genannt, ist eine Aussage über Irrfahrten aus der Theorie der stochastischen Prozesse und somit der Wahrscheinlichkeitstheorie zuzuordnen. Das Reflexionsprinzip ist eine Folgerung aus der starken Markow-Eigenschaft und wird in unterschiedlichen Versionen formuliert, unter anderem für den Wiener-Prozess. Anschaulich liefert das Reflexionsprinzip eine Abschätzung für die Wahrscheinlichkeit, dass ein stochastischer Prozess vor einem gewissen Zeitpunkt einen vorgegebenen Schwellenwert bereits einmal überschritten hat.

Reflexionsprinzip für die symmetrische Irrfahrt

[Bearbeiten | Quelltext bearbeiten]

Gegeben sei eine Folge von unabhängig identisch verteilten sowie symmetrischen und reellwertigen Zufallsvariablen.

Sei und

Dann gilt für alle und alle

Nehmen die fast sicher Werte aus an, so gilt für alle in der obigen Ungleichung Gleichheit.[4]

Reflexionsprinzip aus kombinatorischer Sicht

[Bearbeiten | Quelltext bearbeiten]

Seien , und die Anzahl der Folgen mit , und . Wenn gerade ist, gilt .

Das Spiegelungsprinzip gibt nun folgende Aussage:

Sei . Bezeichne die Anzahl der Wege von nach welche die Gerade schneiden oder berühren. Dann gilt:

Sei . Spiegeln wir nun den verbliebenen Wegteil von bis an der Geraden , so erhalten wir einen neuen Weg von nach . Auch dieser Weg berührt oder schneidet die Gerade . Auf diese Weise können die Wege bijektiv aufeinander abgebildet werden und die Behauptung folgt.

Reflexionsprinzip für den Wiener-Prozess

[Bearbeiten | Quelltext bearbeiten]

Sei ein Wiener-Prozess sowie und . Dann gilt[5][6]

.

Über die Dichte der Normalverteilung erhält man die weitere Abschätzung

.

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. Klenke: Wahrscheinlichkeitstheorie. 2013, S. 363.
  2. Klenke: Wahrscheinlichkeitstheorie. 2013, S. 520.
  3. Meintrup, Schäffler: Stochastik. 2005, S. 364.
  4. Klenke: Wahrscheinlichkeitstheorie. 2013, S. 363.
  5. Klenke: Wahrscheinlichkeitstheorie. 2013, S. 480.
  6. Meintrup, Schäffler: Stochastik. 2005, S. 366.