Die Retrosynthese oder auch retrosynthetische Analyse ist eine Technik beim Planen einer chemischen Synthese von komplexen organischen Molekülen. Dabei wird das Molekül gedanklich in einfachere Bausteine zerlegt, für deren Verknüpfung Synthesebeispiele bekannt sind. Auf diese Weise gelangt man schrittweise zu käuflichen oder literaturbekannten Bausteinen. Dies führt zu einem Schema, welches sich wie ein Baum nach unten verzweigt. E. J. Corey hat diesen Formalismus eingeführt[1] und wurde aufgrund dieser Arbeiten im Jahr 1990 mit dem Nobelpreis für Chemie geehrt.[2][3] Die Mächtigkeit der Retrosynthese zeigt sich, wenn eine neue Syntheseroute entworfen werden soll. Ziel ist es, die gewünschte Struktur immer weiter zu vereinfachen. Dabei ergeben sich in der Regel mehrere mögliche Routen, welche in ihrer Gesamtheit den Synthese-Baum ausmachen. Die Aufgabe des Chemikers ist es nun, den idealen Weg auszuwählen, der jedoch nicht immer der kürzeste sein muss.[4]
Für diese formalen Schnitte hat Corey ein einfaches Bausteinmodell entwickelt, welches sogar über ein Computerprogramm (LHASA) mit Hilfe einer Reaktionsdatenbank das Retrosyntheseschema liefern kann. Hierzu wurden mehrere mögliche Reaktionsschritte abstrahiert und in folgenden Definitionen formuliert.
Am einfachen Beispiel der Phenylessigsäure kann das Konzept der Retrosynthese anschaulich gemacht werden:
Bei der Planung der Synthese können zwei Synthons erkannt werden. Das eine Synthon ist die Carboxygruppe −COOH als nucleophiles Synthon. Als komplementäres elektrophiles Synthon kann man die PhCH2+-Gruppe, also das Benzylkation, erkennen. Beide Synthons sind als Verbindung nicht stabil. Dazu werden nun synthetische Äquivalente gesucht. Ein Äquivalent für das −COOH ist das Cyanid-Anion, das andere, für das Benzylkation, wäre Benzylbromid. Bezeichnend für ein synthetisches Äquivalent ist, dass es die elektronischen Eigenschaften des Synthons widerspiegelt, also dessen Reaktivität aufweisen sollte, und dass das durch Verknüpfung der Synthons erhaltene Molekül chemisch später durch Manipulation der funktionellen Gruppe (hier der Nitrilgruppe) in das Target, also Phenylessigsäure, umgewandelt werden kann. Die Umwandlung wäre in diesem Beispiel durch saure oder basische Hydrolyse möglich:
Alternativ könnte die retrosynthetische Analyse zur Herstellung von Phenylessigsäure auch zwei andere Synthons ergeben, die PhCH2−-Gruppe und +COOH. Auch diese beiden Synthons sind als Verbindung nicht stabil. Deshalb werden nun synthetische Äquivalente gesucht. Ein Äquivalent zur PhCH2−-Gruppe ist Benzylmagnesiumbromid (PhCH2MgBr) mit dem negativ polarisierten benzylischen Kohlenstoffatom, das synthetische Äquivalent zu +COOH ist Kohlendioxid, CO2:
Durch die Verknüpfung dieser beiden Synthons würde PhCH2CO2MgBr resultieren, dessen Hydrolyse dann das Zielmolekül Phenylessigsäure liefert.
Die Entwicklung von LHASA (Logic and Heuristic Applied to Synthesis Analysis) wird derzeit von drei Arbeitsgruppen betrieben. LHASA berechnet Synthesebäume ausschließlich auf retrosynthetischer Basis. Es verfügt derzeit über eine Datenbank von 2000 Transformationen. Beurteilt werden die Transformationen durch von Corey entwickelte Synthesestrategien.