Eine Primzahlp nennt man Sophie-Germain-Primzahl oder auch Germainsche Primzahl, wenn auch 2p + 1 eine Primzahl ist (2p + 1 ist dann eine sichere Primzahl (vom englischen Safe prime)). Diese Primzahlen sind nach der MathematikerinSophie Germain (1776–1831) benannt, die sich mit der Fermatschen Vermutung beschäftigte und bewies, dass der erste Fall der Vermutung für alle Sophie-Germain-Primzahlen zutrifft.[1]
Der folgenden Liste kann man die 10 größten bekannten Sophie-Germain-Primzahlen entnehmen. Sämtliche Entdecker dieser Primzahlen sind Teilnehmer des PrimeGrid-Projektes.
Eine Sophie-Germain-Primzahl kann im Dezimalsystem niemals die Endziffer 7 haben.
Beweis:
Sei p eine Primzahl mit Endziffer 7. Dann kann man p darstellen als p = 10k + 7. Dann gilt: 2p + 1 = 20k + 14 + 1 = 20k + 15 = 5·(4k + 3).
Das bedeutet, 2p + 1 ist durch 5 teilbar, aber größer als 14, also nicht prim.
Alle Sophie-Germain-Primzahlen gehören der Restklasse an, haben also die Form mit ganzzahligem .
Beweis:
Alle Zahlen der Restklassen r ≡ 0 (mod 6), r ≡ 2 (mod 6) und r ≡ 4 (mod 6) sind gerade und demnach durch 2 teilbar.
Alle Zahlen der Restklassen r ≡ 0 (mod 6) und r ≡ 3 (mod 6) sind durch 3 teilbar.
Zwar existieren Primzahlen in der Restklasse r ≡ 1 (mod 6), jedoch ergibt 2·(6n+1)+1 = 12n+3 = 3·(4n+1) – und 3·(4n+1) ist durch 3 teilbar.
Als einzige Sechser-Restklasse für die Sophie-Germain-Primzahlen bleibt die Restklasse r ≡ 5 (mod 6) übrig. Nur in diesem Fall hat die zu einer Sophie-Germain-Primzahl gehörende sichere Primzahl die Form 2·(6n+5)+1 = 12n+11 ≡ 5 (mod 6) und kann prim sein.
Die Anzahl aller Sophie-Germain-Primzahlen unterhalb einer Grenze N beträgt ungefähr
mit C2 = 0,6601618158 (siehe Primzahlzwillingskonstante).
Diese Formel kann man mit den bekannten Sophie-Germain-Primzahlen recht gut bestätigen.
Für N = 104 liefert die Vorhersage 156 Sophie-Germain-Primzahlen, was einen Fehler von 18 % zur exakten Anzahl von 190 bedeutet. Für N = 107 liefert die Vorhersage 50822, was bereits nur noch 9 % vom exakten Wert 56032 entfernt ist. Eine numerische Approximation des Integrals liefert noch bessere Ergebnisse, etwa 195 für N = 104 (Fehler nur noch 2,6 %) und 56128 für N = 107 (Fehler fast vernachlässigbar bei 0,17 %).
Die Dichte der Sophie-Germain-Primzahlen fällt in der Größenordnung um ln(N)-mal stärker als die der Primzahlen selbst. Sie findet Anwendung für eine genauere Laufzeitabschätzung für den AKS-Primzahltest, der die Primeigenschaft in polynomialer Zeit feststellen kann.
Bei einer Cunningham-Kette der ersten Art handelt es sich, mit Ausnahme der letzten Zahl, um eine Folge von Sophie-Germain-Primzahlen. Ein Beispiel für eine solche Kette ist die Folge: 2, 5, 11, 23, 47.