Das Stratonowitsch-Integral (auch Fisk-Stratonowitsch-Integral) ist ein stochastischer Integralbegriff und eine Alternative für das Itō-Integral. Beide Integrale lassen sich ineinander transformieren. Im Unterschied zu dem Itō-Integral, wo man für die Konstruktion nur den linken Endpunkt des Zerlegungsintervalls benötigt
nützt man beim Stratonowitsch-Integral das arithmetische Mittel des linken und rechten Endpunktes
Der Vorteil des Stratonowitsch-Integrals gegenüber dem Itō-Integral ist, dass die Itō-Formel nur Differentiale erster Ordnung besitzt.
Das Fisk-Stratonowitsch-Integral ist nach Ruslan Stratonowitsch und Donald Fisk benannt.
Seien und Semimartingale definiert auf einem filtrierten Wahrscheinlichkeitsraum und . Dann ist das Stratonowitsch-Integral von bezüglich definiert als[1]
Hier ist das Itō-Integral und der stetige Teil der optionalen quadratischen Kovariation. Ferner sind die die Sprungstellen des Prozesses.
Wenn und stetige Semimartingale sind, dann ist
oder in Differentialschreibweise
- Die Definition des Stratonowitsch-Integrales lässt sich verallgemeinern, so dass nicht mehr ein Semimartingal ist, sondern lediglich adaptiert und càdlàg.
Das Stratonowitsch-Integral erhält man, wenn man das arithmetische Mittel des linken und rechten Endpunktes des Zerlegungsintervall nimmt. Sei eine Partition von und stetige Semimartingale. Dann gilt
Es gilt folgende Beziehung zwischen den beiden Integralbegriffen
Wenn und stetige Semimartingale sind, dann gilt
Sei ein -Semimartingal und , dann ist ein Semimartingal und es gilt[2]
Das Integrationsgebiet bedeutet .
Sei ein stetiges -Semimartingal und , dann ist ein Semimartingal und es gilt
Eine Verallgemeinerung für Semimartingale mit Sprüngen ist das Marcus-Integral, welches man durch Umschreiben des Sprung-Terms erhält.
Das Ogawa-Integral verallgemeinert das Stratonowitsch-Integral.
- Wolfgang Hackenbroch und Anton Thalmaier: Stochastische Analysis: Eine Einführung in die Theorie der stetigen Semimartingale. Hrsg.: Vieweg+Teubner Verlag Wiesbaden. ISBN 978-3-519-02229-9, S. 349–544.
- Philip E. Protter: Stochastic Integration and Differential Equations. Hrsg.: Springer. 2004, ISBN 3-540-00313-4.
- Bernt K. Øksendal, Bernt K.: Stochastic Differential Equations: An Introduction with Applications. Hrsg.: Springer, Berlin. 2003, ISBN 3-540-04758-1.
- ↑ Philip E. Protter: Stochastic Integration and Differential Equations. Hrsg.: Springer. 2004, ISBN 3-540-00313-4, S. 82.
- ↑ Philip E. Protter: Stochastic Integration and Differential Equations. Hrsg.: Springer. 2004, ISBN 3-540-00313-4, S. 277–278.