Tobias Bonhoeffer war zwischen 2008 und 2011 Sektionsvorsitzender der biologisch-medizinischen Sektion der Max-Planck-Gesellschaft. Mitte 2008 wurde er zum Gründungspräsidenten des Institute of Science and Technology Austria (ISTA) in Maria Gugging bei Wien nominiert,[4] gab aber am 21. Juli 2008 bekannt, aus persönlichen Gründen auf die angebotene Leitung des ISTA zu verzichten.[5]
2014 wurde Bonhoeffer in den Aufsichtsrat (Board of Governors) des britischen Wellcome Trust berufen[6] und war dort als Governor bis Ende 2021 tätig. 2016 wurde er wissenschaftlicher Berater der Chan Zuckerberg Initiative, gegründet von Mark Zuckerberg und seiner Frau Priscilla Chan.[7] Im Jahr 2017 wurde er zum Vorsitzenden des Wissenschaftlichen Rats der Max-Planck-Gesellschaft gewählt.
Bonhoeffers Arbeiten beschäftigen sich mit den zellulären Grundlagen von Lernen und Gedächtnis sowie der frühen postnatalen Entwicklung des Gehirns. Ihm und seinen Mitarbeitenden gelang erstmalig der Nachweis von „pinwheels“ im visuellen System von Säugern mit Hilfe hochauflösender bildgebender Verfahren.[8] Andere Arbeiten beschäftigten sich mit Nervenwachstumsfaktoren, insbesondere Brain-derived neurotrophic factor (BDNF),[9][10] der funktionellen Verstärkung von Synapsen, die sich in morphologischen Veränderungen von Nervenzellen niederschlägt, indem neue dendritische Dornen (spines) gebildet werden,[11] dem gezielten Abbau von Proteinen als Mechanismus für das Speichern von Informationen im Nervensystem[12] und damit, dass viele der bei einem Lernvorgang gewachsenen Zellkontakte bei Nichtbenutzung nur inaktiviert, aber nicht abgebaut werden; dadurch soll späteres Wiedererlernen wesentlich schneller vonstattengehen.[13]
Bonhoeffers Arbeit führte zu einer Reihe wichtiger wissenschaftlicher Entdeckungen. Dazu gehören:
der Nachweis der Existenz von „Pinwheels“ im visuellen System von Säugetieren durch intrinsische optische Bildgebung (Bonhoeffer & Grinvald, Nature 1991)[8]
der Nachweis, dass Neurotrophine, insbesondere der Brain-derived neurotrophic factor, eine wichtige Rolle bei der synaptischen Plastizität spielen (Korte et al., PNAS 1995 & 1996)[9][10]
die Beobachtung, dass die funktionelle Verstärkung von Synapsen mit morphologischen Veränderungen der Nervenzelle einhergeht, genauer gesagt mit der Bildung von dendritischen Dornen (Engert & Bonhoeffer, Nature 1999)[11]
der Nachweis, dass Hippocampus-Dornen eine aktivitätsabhängige, bidirektionale strukturelle Plastizität aufweisen (Nägerl et al., Neuron 2004)[14]
den Nachweis, dass lang anhaltende synaptische Plastizität sowohl von der Proteinsynthese als auch vom Proteinabbau abhängt (Fonseca et al., Neuron 2006)[12]
die Erkenntnis, dass neue synaptische Kontakte, die während eines Lernprozesses entstehen, bestehen bleiben, auch wenn die gelernte Information vergessen wurde; dies erleichtert das spätere Neulernen (Hofer et al., Nature 2009)[13]
der Nachweis, dass Nager lernen können visuelle Reize Kategorien zuzuordnen und dass bei diesem Lernvorgang wichtige Veränderungen im medialen präfrontalen Kortex vonstattengehen (Reinert et al., Nature 2021)[15]
↑ abT Bonhoeffer, A Grinvald: Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns. In: Nature. 353. Jahrgang, Nr.6343, Oktober 1991, S.429–31, doi:10.1038/353429a0, PMID 1896085 (englisch).
↑ abM Korte, P Carroll, E Wolf, G Brem, H Thoenen, T Bonhoeffer: Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. In: Proc Natl Acad Sci U S A. 92. Jahrgang, Nr.19, September 1995, S.8856–60, doi:10.1073/pnas.92.19.8856, PMID 7568031, PMC 41066 (freier Volltext) – (englisch).
↑ abM Korte, O Griesbeck, C Gravel, P Carroll, V Staiger, H Thoenen, T Bonhoeffer: Virus-mediated gene transfer into hippocampal CA1 region restores long-term potentiation in brain-derived neurotrophic factor mutant mice. In: Proc Natl Acad Sci U S A. 93. Jahrgang, Nr.22, Oktober 1996, S.12547–52, doi:10.1073/pnas.93.22.12547, PMID 8901619, PMC 38029 (freier Volltext) – (englisch).
↑ abF Engert, T Bonhoeffer: Dendritic spine changes associated with hippocampal long-term synaptic plasticity. In: Nature. 399. Jahrgang, Nr.6731, Mai 1999, S.66–70, doi:10.1038/19978, PMID 10331391 (englisch).
↑ abR Fonseca, RM Vabulas, FU Hartl, T Bonhoeffer, UV Nägerl: A balance of protein synthesis and proteasome-dependent degradation determines the maintenance of LTP. In: Neuron. 52. Jahrgang, Nr.2, Oktober 2006, S.239–45, doi:10.1016/j.neuron.2006.08.015, PMID 17046687 (englisch).
↑ abSB Hofer, TD Mrsic-Flogel, T Bonhoeffer, M Hübener: Experience leaves a lasting structural trace in cortical circuits. In: Nature. 457. Jahrgang, Nr.7227, Januar 2009, S.313–7, doi:10.1038/nature07487, PMID 19005470, PMC 6485433 (freier Volltext) – (englisch).
↑UV Nägerl, N Eberhorn, SB Cambridge, T Bonhoeffer: Bidirectional activity-dependent morphological plasticity in hippocampal neurons. In: Neuron. 44. Jahrgang, Nr.5, Dezember 2004, S.759–67, doi:10.1016/j.neuron.2004.11.016, PMID 15572108.
↑S Reinert, M Hübener, T Bonhoeffer, PM Goltstein: Mouse prefrontal cortex represents learned rules for categorization. In: Nature. 593. Jahrgang, Nr.7859, Mai 2021, S.411–417, doi:10.1038/s41586-021-03452-z, PMID 33883745, PMC 8131197 (freier Volltext).