Als trigonometrischer Pythagoras wird die Identität
bezeichnet.[1][2]
Hierbei steht für und für . Die Gültigkeit dieser Identität kann am Einheitskreis gezeigt werden, mit Hilfe des Satzes von Pythagoras, der auch namensgebend für diesen häufig benutzten Satz der Trigonometrie ist.
In der nebenstehenden Skizze sind der Einheitskreis, das heißt ein Kreis mit Radius 1, und ein rechtwinkliges Dreieck mit Hypotenusenlänge 1 im Einheitskreis dargestellt. Der Satz des Pythagoras gilt hier für einen beliebigen Wert des Winkels im Einheitskreis und zeigt sofort die Gültigkeit des „trigonometrischen Pythagoras“.
Für stumpfe und überstumpfe Winkel ist die Beweiskraft der Anschauung problematisch, da für solche (mindestens) eine Winkelfunktion negative Werte hat; was sind „negative Seiten“ eines rechtwinkligen Dreiecks? Ein analytischer Beweis zeigt, dass der trigonometrische Pythagoras für beliebige reelle und komplexe Argumente der verwendeten Winkelfunktionen gilt.