|
Το λήμμα παραθέτει τις πηγές του αόριστα, χωρίς παραπομπές. Βοηθήστε συνδέοντας το κείμενο με τις πηγές χρησιμοποιώντας παραπομπές, ώστε να είναι επαληθεύσιμο.
Το πρότυπο τοποθετήθηκε χωρίς ημερομηνία. Για τη σημερινή ημερομηνία χρησιμοποιήστε: {{χωρίς παραπομπές|12|01|2025}} |
Η αρχή του Χάμιλτον (Hamilton) είναι μία αρχή της φυσικής βάσει της οποίας τα φυσικά συστήματα συμπεριφέρονται έτσι ώστε το φυσικό μέγεθος που ονομάζεται δράση να στασιμοποιείται. Αυτή είναι μία αρχή η οποία φαίνεται να έχει γενική ισχύ στη φυσική και εφαρμόζεται σε διάφορα φυσικά συστήματα. Αρχικά, όμως, η αρχή αυτή εφαρμόστηκε σε κλασικά μηχανικά συστήματα.
Η δράση (S) ενός συστήματος το οποίο βρισκόταν αρχικά στην κατάσταση Α και περιήλθε στην κατάσταση Β, είναι ένα φυσικό μέγεθος το οποίο ορίζεται ως εξής:
- , όπου L είναι η Λαγκρανζιανή συνάρτηση του συστήματος και αi μέγεθος που περιγράφει το σύστημα, ενώ ο δείκτης i δείχνει τον αριθμό της συνιστώσας του διανύσματος.
Το μέγεθος της δράσης έχει γενικά μονάδες: (Ενέργεια)•(Χρόνος).
Όπως εξηγήθηκε και προηγουμένως η αρχή του Hamilton λέει ότι η φύση προτιμά να ακολουθεί μία ακολουθία καταστάσεων για ένα σύστημα τέτοια ώστε η δράση S να στασιμοποιείται.
Η στασιμοποίηση έγκειται στην μεταβολή της δράσης κατά τάξη ε2 ή μεγαλύτερης (δηλαδή ε3, ε4 κ.λ.π., κάτι που μαθηματικά συμβολίζεται ως Ο[ε2]), όταν το μέγεθος αλλάζει κατά τάξη ε ως:
Το ni είναι μία συνεχής συνάρτηση που δείχνει τον τρόπο με τον οποίο μεταβάλλεται το μέγεθος ai και το ε δείχνει το μέγεθος της μεταβολής αυτής (το πόσο μεγάλη είναι η μεταβολή) και για την οποία πρέπει να ισχύει , απαιτείται δηλαδή από το μέγεθος να έχει ακριβώς την ίδια τιμή με το στις καταστάσεις Α και Β της αρχής και του τέλους αντιστοίχως.
Η εφαρμογή της αρχής του Hamilton σε ένα κλασικό μηχανικό σύστημα, μας οδηγεί στις εξισώσεις Euler - Lagrange που είναι οι εξισώσεις που πρέπει να ικανοποιούνται για να ελαχιστοποιείται η δράση και είναι ισοδύναμες με τον 2ο νόμο του Newton.
Η Λαγκρανζιανή σε αυτήν την περίπτωση είναι της μορφής: , όπου τα q είναι οι θέσεις του συστήματος (βλ. το άρθρο Λαγκρανζιανή συνάρτηση για το λόγο για τον οποίο απορρίφθηκε η υπόθεση η Λαγκρανζιανή στην περίπτωσή μας να είναι συνάρτηση και ανωτέρων παραγώγων της θέσης) και η δράση είναι εξ ορισμού ίση με: .
Υποθέτουμε ότι η q(t) είναι η τροχιά αυτή που ελαχιστοποιεί την δράση και μία παρέκκλιση αυτής της τροχιάς. Η μεταβολή στη δράση θα είναι:
- .
Το ανάπτυγμα της κατά Taylor δίνει:
Συνεπώς, έχουμε:
Βάσει της αρχής του Hamilton πρέπει να μηδενιστεί ο όρος τάξης ε, δηλαδή πρέπει να ισχύει πάντοτε:
Και επειδή η n είναι μία τυχαία συνάρτηση, οδηγούμαστε στην εξίσωση:
η οποία είναι γνωστή ως εξίσωση Euler - Lagrange.
- Ιωάννου Πέτρος, Αποστολάτος Θ., Θεωρητική Μηχανική, Πανεπιστήμιο Αθηνών 2007 (έκδοση Β')