Δέντρο | |
---|---|
Κορυφές | |
Ακμές | |
Χρωματικός αριθμός | 2 (αν |
Ιδιότητες | Διμερής γράφος |
Πίνακας γράφων και των παραμέτρων τους |
Στην θεωρία γράφων, δέντρο είναι ένας μη-κατευθυνόμενος γράφος, στον οποίο οποιοιδήποτε δύο κόμβοι συνδέονται με ένα και μόνο απλό μονοπάτι. Με άλλα λόγια κάθε συνεκτικός γράφος χωρίς κύκλους είναι ένα δέντρο.[1]:13-16[2]
Στην επιστήμη των υπολογιστών, πολλές δομές δεδομένων αναπαριστούν κατευθυνόμενα και μη-κατευθυνόμενα δέντρα.[3][4]
Ένα δέντρο είναι ένας μη κατευθυνόμενος απλός γράφος G που ικανοποιεί οποιαδήποτε από τις παρακάτω ισοδύναμες συνθήκες:[5]
Ένα πολυδέντρο (ή αλλιώς προσανατολισμένο δέντρο) είναι ένας κατευθυνόμενος γράφος με το πολύ ένα μη-κατευθυνόμενο μονοπάτι μεταξύ δύο οποιωνδήποτε κορυφών. Δηλαδή ένα προσανατολισμένο δέντρο είναι ένας άκυκλος κατευθυνόμενος γράφος. Ένα κατευθυνόμενο δέντρο προκύπτει όταν από ένα κατευθυνόμενο γράφο αφαιρέσουμε τις κατευθύνεσεις των ακμών του.
Ένα δέντρο ονομάζεται ριζωμένο εάν μία κορυφή έχει οριστεί ως ρίζα. Τότε λέμε ότι οι ακμές έχουν προσανατολισμό προς ή από τη ρίζα. Σε ένα ριζωμένο δέντρο, ο πατέρας μιας κορυφής είναι η αμέσως προηγούμενη κορυφή της διαδρομής από τη ρίζα σ' αυτήν. Κάθε κορυφή εκτός από τη ρίζα έχει ένα μοναδικό γονιό. Το παιδί μιας κορυφής είναι μια κορυφή της οποίας αυτή είναι πατέρας. Μία κορυφή χωρίς παιδιά λέγεται φύλλο. Μία τερματική κορυφή ενός δέντρου είναι μία κορυφή βαθμού 1. Σε ένα ριζωμένο δέντρο, όλα τα φύλλα είναι τερματικές κορυφές.
Οι κόμβοι ενός δέντρου μπορούν να χωριστούν σε επίπεδα, με την έννοια ότι κόμβοι που απέχουν το ίδιο από τη ρίζα βρίσκονται στο ίδιο επίπεδο. Πιο αυστηρά, όλοι οι κόμβοι των οποίων τα μονοπάτια από τη ρίζα προς αυτά έχουν το ίδιο μήκος, ανήκουν στο ίδιο επίπεδο.
Ένα δάσος είναι ένας μη-κατευθυνόμενος γράφος, του οποίου όλες οι συνεκτικές συνιστώσες είναι δέντρα. Με άλλα λόγια, το δάσος αποτελείται από την ένωση ενός αριθμού ξένων μεταξύ τους δέντρων.
Αξίζει αναφορά σε συγκεκριμένα είδη δέντρων, καθώς εμφανίζονται συχνά σε εφαρμογές.
Τα δέντρα δεν είναι γραμμικές δομές και για τον λόγο αυτό δεν υπάρχει από τη φύση τους κάποιος γραμμικός τρόπος διαπέρασης των κόμβων τους ή γραμμικής τους διάταξης. Η ύπαρξη πολλαπλών δυνατοτήτων για τη διάταξη ενός κόμβου ως προς τους απογόνους του δημιουργεί διάφορα είδη διελεύσεων/διατάξεων. Ωστόσο τρεις διαφορετικοί τρόποι διαπέρασης των κόμβων ενός δέντρου είναι οι σημαντικότεροι.
Κατά την προδιατεταγμένη διάσχιση, οι κόμβοι ενός δέντρου διατρέχονται με προτεραιότητα στον πατέρα έναντι του παιδιού. Ο κόμβος εκκίνησης είναι η ρίζα, ως πρόγονος όλων των κόμβων.
Η προδιατεταγμένη διάσχιση ενός δέντρου συντακτικής ανάλυσης αντιστοιχεί σε προθεματικές συντάξεις, όπως η πολωνική γραφή του προτασιακού λογισμού. Επίσης, η προδιατεταγμένη διάσχιση είναι μια πιθανή σειρά διαπέρασης των κόμβων ενός δέντρου με τον αλγόριθμο της αναζήτησης κατά βάθος.
Κατά τη μεταδιατεταγμένη διάσχιση, οι κόμβοι ενός δέντρου διατρέχονται με προτεραιότητα στο παιδί έναντι του πατέρα. Δηλαδή, πριν τη διέλευση από έναν κόμβο, έχουμε διέλθει πρώτα από όλα τα παιδιά του.
Στην περίπτωση αυτή, η διαπέραση γίνεται ξεκινώντας από το μικρότερο επίπεδο, δηλαδή τη ρίζα. Πρώτα διαπερνώνται όλοι οι κόμβοι ενός επιπέδου και η διαπέραση προχωρά στους κόμβους του επόμενου επιπέδου. Μια αναζήτηση κατά πλάτος διατάσσει τους κόμβους στη σειρά αυτή.
Στην ενδοδιατεταγμένη διάσχιση ενός δυαδικού δέντρου ο κόμβος εμφανίζεται στην διάταξη αφού πρώτα τελειώσει η διάσχιση στο αριστερό του παιδί (αν υπάρχει) και έπειτα συνεχίζει η διάσχιση στο δεξί του παιδί.
Στα δυαδικά δένδρα αναζήτησης, η ενδοδιατεταγμένη διάσχιση μας δίνει τα ταξινομημένα στοιχεία του συνόλου που αναπαριστά.