Ένας συμπαράγοντας (cofactor) είναι μια μη πρωτεϊνούχοςχημική ένωση, ή μεταλλικό ιόν που απαιτείται για τον ρόλο ενός ένζυμου ως καταλύτη (καταλύτης είναι μια ουσία που αυξάνει τον ρυθμό μιας χημικής αντίδρασης). Οι συμπαράγοντες μπορούν να θεωρηθούν βοηθητικά μόρια που βοηθούν στους βιοχημικούς μετασχηματισμούς. Οι ρυθμοί με τους οποίους συμβαίνουν αυτοί χαρακτηρίζονται σε μια περιοχή μελέτης που ονομάζεται κινητική ενζύμων. Οι συμπαράγοντες τυπικά διαφέρουν από τους προσδέτες (ligands) στο ότι συχνά αντλούν τη λειτουργία τους παραμένοντας δεσμευμένοι.
Οι συμπαράγοντες μπορούν να ταξινομηθούν σε δύο τύπους: ανόργανα ιόντα και σύνθετα οργανικά μόρια που ονομάζονται συνένζυμα (coenzymes).[1] Τα συνένζυμα προέρχονται κυρίως από βιταμίνες και άλλα οργανικά θρεπτικά συστατικά σε μικρές ποσότητες. (Ορισμένοι επιστήμονες περιορίζουν τη χρήση του όρου "συμπαράγοντας" για ανόργανες ουσίες.Εδώ περιλαμβάνονται και οι δύο τύποι.[2][3])
Τα συνένζυμα χωρίζονται περαιτέρω σε δύο τύπους. Η πρώτη ονομάζεται προσθετική ομάδα, η οποία αποτελείται από ένα συνένζυμο που είναι στενά (ή και ομοιοπολικά) και μόνιμα συνδεδεμένο με μια πρωτεΐνη.[4] Ο δεύτερος τύπος συνενζύμων ονομάζονται συνυποστρώματα και συνδέονται παροδικά με την πρωτεΐνη. Τα συνυποστρώματα μπορεί να απελευθερωθούν από μια πρωτεΐνη σε κάποιο σημείο και στη συνέχεια να επανασυνδεθούν αργότερα. Τόσο οι προσθετικές ομάδες όσο και τα συνυποστρώματα έχουν την ίδια λειτουργία, η οποία είναι να διευκολύνουν την αντίδραση ενζύμων και πρωτεϊνών. Ένα ανενεργό ένζυμο χωρίς τον συμπαράγοντα ονομάζεται αποένζυμο (apoenzyme), ενώ το πλήρες ένζυμο με συμπαράγοντα ονομάζεται ολοένζυμο (holoenzyme).[5] Η IUPAC ορίζει το συνένζυμο λίγο διαφορετικά, δηλαδή ως μια οργανική μη πρωτεϊνική ένωση χαμηλού μοριακού βάρους, που συνδέεται χαλαρά, συμμετέχοντας σε ενζυμικές αντιδράσεις ως διασπώμενος φορέας χημικών ομάδων ή ηλεκτρονίων. Μια προσθετική ομάδα ορίζεται ως μια στενά συνδεδεμένη, μη πολυπεπτιδική μονάδα σε μια πρωτεΐνη που αναγεννάται σε κάθε ενζυματικό κύκλο εργασιών..[6])
Ορισμένα ένζυμα ή σύμπλοκα ενζύμων απαιτούν αρκετούς συμπαράγοντες. Για παράδειγμα, το πολυενζυμικό σύμπλεγμα πυροσταφυλική αφυδρογονάση (pyruvate dehydrogenase)[7] στη διασταύρωση της γλυκόλυσης και του κύκλου του κιτρικού οξέος απαιτεί πέντε οργανικούς συμπαράγοντες και ένα μεταλλικό ιόν: χαλαρά συνδεδεμένη πυροφωσφορική θειαμίνη (thiamine pyrophosphate, TPP), ομοιοπολικά συνδεδεμένη λιποαμίδιο (lipoamide) και φλαβινο-αδενινο-δινουκλεοτίδιο (flavin adenine dinucleotide, FAD), συνυποστρώματα νικοτιναμίδo-αδένινο-δινουκλεοτίδιο (nicotinamide adenine dinucleotide, NAD+) και συνένζυμο Α (coenzyme A, CoA) και ένα μεταλλικό ιόν (Mg2+).[8]
Οι οργανικοί συμπαράγοντες είναι συχνά βιταμίνες ή παρασκευάζονται από βιταμίνες. Πολλοί περιέχουν το νουκλεοτίδιομονοφωσφορική αδενοσίνη (AMP) ως μέρος των δομών τους, όπως ATP, συνένζυμο Α, δινουκλεοτίδιο αδενίνης φλαβίνης και Νικοτιναμιδο- αδένινο- δινουκλεοτίδιο (NAD+). Αυτή η κοινή δομή μπορεί να αντανακλά μια κοινή εξελικτική προέλευση ως μέρος των ριβοενζύμων σε έναν αρχαίο κόσμο RNA. Έχει προταθεί ότι το τμήμα AMP του μορίου μπορεί να θεωρηθεί ότι είναι ένα είδος λαβής μέσω της οποίας το ένζυμο μπορεί να πιάσει το συνένζυμο για να το αλλάξει μεταξύ διαφορετικών καταλυτικών κέντρων.[9]
Οι συμπαράγοντες μπορούν να διαιρεθούν σε δύο μεγάλες ομάδες: οργανικούς συμπαράγοντες, όπως φλαβίνες ή αίμη και ανόργανους συμπαράγοντες, όπως τα μεταλλικά ιόντα Mg2+, Cu+, Mn2+ και σύμπλοκα σιδήρου-θείου.
Οι οργανικοί συμπαράγοντες μερικές φορές χωρίζονται περαιτέρω σε συνένζυμα και προσθετικές ομάδες. Ο όρος συνένζυμο αναφέρεται ειδικά σε ένζυμα και, ως εκ τούτου, στις λειτουργικές ιδιότητες μιας πρωτεΐνης. Από την άλλη πλευρά, η "προσθετική ομάδα" δίνει έμφαση στη φύση της δέσμευσης ενός συμπαράγοντα σε μια πρωτεΐνη (σφιχτή ή ομοιοπολική) και, ως εκ τούτου, αναφέρεται σε μια δομική ιδιότητα. Διαφορετικές πηγές δίνουν ελαφρώς διαφορετικούς ορισμούς των συνενζύμων, των συμπαραγόντων και των προσθετικών ομάδων. Μερικοί θεωρούν τα στενά συνδεδεμένα οργανικά μόρια ως προσθετικές ομάδες και όχι ως συνένζυμα, ενώ άλλοι ορίζουν όλα τα μη πρωτεϊνικά οργανικά μόρια που χρειάζονται για την ενζυμική δραστηριότητα ως συνένζυμα και ταξινομούν εκείνα που είναι στενά συνδεδεμένα ως προσθετικές ομάδες συνενζύμων. Αυτοί οι όροι χρησιμοποιούνται συχνά χαλαρά.
Μια επιστολή του 1980 στο Trends in Biochemistry Sciences σημείωσε τη σύγχυση στη βιβλιογραφία και την ουσιαστικά αυθαίρετη διάκριση μεταξύ προσθετικών ομάδων και ομάδων συνενζύμων και πρότεινε το ακόλουθο σχήμα. Εδώ, οι συμπαράγοντες ορίστηκαν ως μια πρόσθετη ουσία εκτός από την πρωτεΐνη και το υπόστρωμα που απαιτείται για την ενζυμική δραστηριότητα και μια προσθετική ομάδα ως ουσία που υφίσταται ολόκληρο τον καταλυτικό κύκλο συνδεδεμένη με ένα μόνο μόριο ενζύμου . Ωστόσο, ο συγγραφέας δεν μπόρεσε να καταλήξει σε έναν ενιαίο και περιεκτικό ορισμό του συνενζύμου και πρότεινε να διαγραφεί αυτός ο όρος από τη χρήση στη βιβλιογραφία.[10]
Τα μεταλλικάιόντα είναι κοινοί συμπαράγοντες.[11] Η μελέτη αυτών των συμπαραγόντων εμπίπτει στον τομέα της βιοοργανικής χημείας. Στη διατροφή, ο κατάλογος των βασικών ιχνοστοιχείων αντικατοπτρίζει τον ρόλο τους ως συμπαράγοντες. Στους ανθρώπους αυτός ο κατάλογος περιλαμβάνει συνήθως σίδηρο, μαγνήσιο, μαγγάνιο, κοβάλτιο, χαλκό, ψευδάργυρο και μολυβδαίνιο.[12]. Αν και η ανεπάρκεια χρωμίου προκαλεί προδιαβήτη, κανένα ανθρώπινο ένζυμο που χρησιμοποιεί αυτό το μέταλλο ως συμπαράγοντα δεν έχει εντοπιστεί.[13][14] Το ιώδιο είναι επίσης ένα απαραίτητο ιχνοστοιχείο, αλλά αυτό το στοιχείο χρησιμοποιείται ως μέρος της δομής της θυρεοειδικών ορμονών παρά ως συμπαράγοντας ενζύμου.[15] Το ασβέστιο είναι μια άλλη ειδική περίπτωση, καθώς απαιτείται ως συστατικό της ανθρώπινης διατροφής και απαιτείται για την πλήρη δραστηριότητα πολλών ενζύμων, όπως η συνθάση του μονοξειδίου του αζώτου, οι φωσφατάσες πρωτεϊνών και η αδενυλική κινάση (adenylate kinase), αλλά το ασβέστιο ενεργοποιεί αυτά τα ένζυμα στην αλλοστερική ρύθμιση, συχνά δεσμεύοντας αυτά τα ένζυμα σε σύμπλοκο με καλμοδουλίνη.[16] Το ασβέστιο είναι, επομένως, ένα μόριο κυτταρικής σηματοδότησης και δεν θεωρείται συνήθως συμπαράγοντας των ενζύμων που ρυθμίζει.[17]
Άλλοι οργανισμοί απαιτούν πρόσθετα μέταλλα ως συμπαράγοντες ενζύμων, όπως βανάδιο στην αζωτογονάση (nitrogenase) των βακτηρίων αζωτοδέσμευσης του γένους Azotobacter,[18]βολφράμιο στην οξειδοαναγωγάση της φερεδοξίνης αλδεΰδης (aldehyde ferredoxin oxidoreductase) των θερμόφιλων αρχαίωνPyrococcus furiosus,[19] και ακόμη κάδμιο στην ανθρακική ανυδράση από τα θαλάσσια διάτομαThalassiosira weissflogii.[20][21]
Σε πολλές περιπτώσεις, ο συμπαράγοντας περιλαμβάνει και ανόργανο και οργανικό. Ένα ποικίλο σύνολο παραδειγμάτων είναι οι πρωτεΐνες της αίμης, που αποτελούνται από έναν δακτύλιο πορφυρίνης που συνδυάζεται με σίδηρο.[22]
Τα σύμπλοκα σιδήρου-θείου είναι σύμπλοκα ατόμων σιδήρου και θείου που συγκρατούνται στις πρωτεΐνες από υπολείμματα κυστεϊνυλίου. Παίζουν τόσο δομικούς όσο και λειτουργικούς ρόλους, συμπεριλαμβανομένης της μεταφοράς ηλεκτρονίων, της ανίχνευσης οξειδοαναγωγής και ως δομικές μονάδες.[23]
Οι οργανικοί συμπαράγοντες είναι μικρά οργανικά μόρια (συνήθως μοριακής μάζας μικρότερης από 1000 Da) που μπορούν είτε να είναι χαλαρά είτε στενά συνδεδεμένα με το ένζυμο και να συμμετέχουν άμεσα στην αντίδραση.[5][24][25][26] Στην τελευταία περίπτωση, όταν είναι δύσκολο να αφαιρεθεί χωρίς μετουσίωση του ενζύμου, μπορεί να ονομαστεί προσθετική ομάδα. Είναι σημαντικό να τονιστεί ότι δεν υπάρχει έντονη διαίρεση μεταξύ χαλαρά και στενά συνδεδεμένων συμπαραγόντων.[5] Πράγματι, πολλοί συμπαράγοντες όπως το NAD+ μπορεί να είναι στενά συνδεδεμένο σε ορισμένα ένζυμα, ενώ είναι χαλαρά συνδεδεμένο σε άλλα.[5] Ένα άλλο παράδειγμα είναι η πυροφωσφορική θειαμίνη (thiamine pyrophosphate, TPP), η οποία είναι στενά συνδεδεμένη στην τρανσκετολάση, ή την πυροσταφυλική αποκαρβοξυλάση, ενώ είναι λιγότερο στενά συνδεδεμένη στην πυροσταφυλική αφυδρογονάση.[27] Άλλα συνένζυμα, το φλαβινο-αδενινο δινουκλεοτίδιο (flavin adenine dinucleotide, FAD), η βιοτίνη και λιποαμίδιο, για παράδειγμα, είναι στενά συνδεδεμένα.[28] Οι στενά συνδεδεμένοι συμπαράγοντες, γενικά, αναγεννώνται κατά τη διάρκεια του ίδιου κύκλου αντίδρασης, ενώ οι χαλαρά συνδεδεμένοι συμπαράγοντες μπορούν να αναγεννηθούν σε μια επακόλουθη αντίδραση που καταλύεται από ένα διαφορετικό ένζυμο. Στην τελευταία περίπτωση, ο συμπαράγοντας μπορεί επίσης να θεωρηθεί υπόστρωμα ή συν-υπόστρωμα.
Οι βιταμίνες μπορούν να χρησιμεύσουν ως πρόδρομοι σε πολλούς οργανικούς συμπαράγοντες (π.χ. βιταμίνες Β1, Β2, Β6, Β12, νιασίνη, φυλλικό οξύ) ή ως συνένζυμα τα ίδια (π.χ., βιταμίνη C). Ωστόσο, οι βιταμίνες έχουν και άλλες λειτουργίες στο σώμα.[29] Πολλοί οργανικοί συμπαράγοντες περιέχουν επίσης ένα νουκλεοτίδιο, όπως οι φορείς ηλεκτρονίων νικοτινάμιδο-αδένινο-δινουκλεοτίδιο (Nicotinamide adenine dinucleotide, NAD) και το φλαβινο-αδένινο-δινουκλεοτίδιο (flavin adenine dinucleotide FAD), και το συνένζυμο Α, που φέρει ακυλομάδες. Οι περισσότεροι από αυτούς τους συμπαράγοντες βρίσκονται σε μια τεράστια ποικιλία ειδών και μερικοί είναι καθολικοί για όλες τις μορφές ζωής. Μια εξαίρεση σε αυτή την ευρεία κατανομή είναι μια ομάδα μοναδικών συμπαραγόντων που εξελίχθηκαν σε μεθανογόνα, οι οποίοι περιορίζονται στην ομάδα των αρχαίων.[30]
Ο μεταβολισμός περιλαμβάνει μια τεράστια ποικιλία χημικών αντιδράσεων, αλλά οι περισσότερες εμπίπτουν σε μερικούς βασικούς τύπους αντιδράσεων που περιλαμβάνουν τη μεταφορά χαρακτηριστικών ομάδων.[60] Αυτή η κοινή χημεία επιτρέπει στα κύτταρα να χρησιμοποιούν ένα μικρό σύνολο μεταβολικών ενδιαμέσων για να μεταφέρουν χημικές ομάδες μεταξύ διαφορετικών αντιδράσεων.[61] Αυτά τα ενδιάμεσα μεταφοράς ομάδων είναι οι χαλαρά συνδεδεμένοι οργανικοί συμπαράγοντες, που συχνά ονομάζονται συνένζυμα.
Κάθε κατηγορία αντίδρασης μεταφοράς ομάδας πραγματοποιείται από έναν συγκεκριμένο συμπαράγοντα, ο οποίος είναι το υπόστρωμα για ένα σύνολο ενζύμων που τον παράγουν και ένα σύνολο ενζύμων που τον καταναλώνουν. Ένα παράδειγμα αυτού είναι οι αφυδρογονάσες που χρησιμοποιούν το NAD+ ως συμπαράγοντα. Εδώ, εκατοντάδες διαφορετικοί τύποι ενζύμων αφαιρούν ηλεκτρόνια από τα υποστρώματά τους και ανάγουν το NAD+ σε NADH. Αυτός ο αναγμένος συμπαράγοντας είναι στη συνέχεια ένα υπόστρωμα για οποιαδήποτε από τις αναγωγάσες στο κύτταρο που απαιτεί ηλεκτρόνια για την αναγωγή των υποστρωμάτων τους.[32]
Επομένως, αυτοί οι συμπαράγοντες ανακυκλώνονται συνεχώς ως μέρος του μεταβολισμού. Για παράδειγμα, η συνολική ποσότητα ATP στο ανθρώπινο σώμα είναι περίπου 0,1 mol. Αυτό το ATP διασπάται συνεχώς σε ADP και στη συνέχεια μετατρέπεται ξανά σε ATP. Έτσι, ανά πάσα στιγμή, η συνολική ποσότητα ATP + ADP παραμένει αρκετά σταθερή. Η ενέργεια που χρησιμοποιείται από τα ανθρώπινα κύτταρα απαιτεί την υδρόλυση 100 έως 150 mol ATP ημερησίως, που είναι περίπου 50 έως 75 kg. Σε τυπικές καταστάσεις, οι άνθρωποι καταναλώνουν το σωματικό τους βάρος σε ATP κατά τη διάρκεια της ημέρας.[62] Αυτό σημαίνει ότι κάθε μόριο ATP ανακυκλώνεται 1000 έως 1500 φορές την ημέρα.
Οργανικοί συμπαράγοντες, όπως ATP και NADH, υπάρχουν σε όλες τις γνωστές μορφές ζωής και αποτελούν βασικό μέρος του μεταβολισμού. Μια τέτοια καθολική διατήρηση δείχνει ότι αυτά τα μόρια εξελίχθηκαν πολύ νωρίς στην ανάπτυξη των ζωντανών όντων.[63] Τουλάχιστον κάποιοι από το σημερινό σύνολο συμπαραγόντων μπορεί, επομένως, να ήταν παρόντες στον τελευταίο παγκόσμιο πρόγονο, ο οποίος έζησε περίπου 4 δισεκατομμύρια χρόνια πριν.[64][65]
Οι οργανικοί συμπαράγοντες μπορεί να ήταν παρόντες ακόμη και νωρίτερα στην ιστορία της ζωής στη Γη.[66] Το νουκλεοτίδιο αδενοσίνη υπάρχει σε συμπαράγοντες που καταλύουν πολλές βασικές μεταβολικές αντιδράσεις όπως η μεταφορά ομάδων μεθυλίου, ακυλίου και φωσφορυλίου, καθώς και αντιδράσεις οξειδοαναγωγής. Αυτό το πανταχού παρόν χημικό ικρίωμα έχει, ως εκ τούτου, προταθεί ότι είναι ένα υπόλειμμα του κόσμου του RNA, με τα πρώιμα ριβοένζυμα να εξελίσσονται για να δεσμεύουν ένα περιορισμένο σύνολο νουκλεοτιδίων και σχετικών ενώσεων.[67][68] Οι συμπαράγοντες που βασίζονται στην αδενοσίνη πιστεύεται ότι δρούσαν ως εναλλάξιμοι προσαρμογείς που επέτρεψαν σε ένζυμα και ριβοένζυμα να δεσμεύουν νέους συμπαράγοντες μέσω μικρών τροποποιήσεων σε υπάρχουσες περιοχές δέσμευσης αδενοσίνης, οι οποίες αρχικά είχαν εξελιχθεί για να δεσμεύουν έναν διαφορετικό συμπαράγοντα.[9] Αυτή η διαδικασία προσαρμογής μιας προ-εξελιγμένης δομής για μια νέα χρήση είναι γνωστή ως εξαρμογή (exaptation).
Μια υπολογιστική μέθοδος, η IPRO, προέβλεψε πρόσφατα μεταλλάξεις που άλλαξαν πειραματικά την εξειδίκευση του συμπαράγοντα της αναγωγάσης ξυλόζης Candida boidinii από NADPH σε NADH.[69]
Ο πρώτος οργανικός συμπαράγοντας που ανακαλύφθηκε ήταν το NAD+, ο οποίος αναγνωρίστηκε από τους Arthur Harden και William Young το 1906.[70] Παρατήρησαν ότι η προσθήκη βρασμένου και φιλτραρισμένου εκχυλίσματος ζύμης επιτάχυνε πολύ την αλκοολική ζύμωση σε άβραστα εκχυλίσματα ζύμης. Ονόμασαν τον άγνωστο παράγοντα που ευθύνεται για αυτό το αποτέλεσμα συζύμωση. Μέσω ενός μακρού και δύσκολου καθαρισμού από εκχυλίσματα ζύμης, αυτός ο σταθερός στη θερμότητα παράγοντας αναγνωρίστηκε ως φωσφορικό σάκχαρο νουκλεοτιδίου από τον Hans von Euler-Chelpin.[71] Άλλοι συμπαράγοντες εντοπίστηκαν στις αρχές του 20ου αιώνα, με το ATP να απομονώνεται το 1929 από τον Karl Lohmann.[72] και το συνένζυμο Α που ανακαλύφθηκε το 1945 από τον Fritz Albert Lipmann.[73]
Οι λειτουργίες αυτών των μορίων ήταν στην αρχή μυστηριώδεις, αλλά, το 1936, ο Otto Heinrich Warburg αναγνώρισε τη λειτουργία του NAD+ στη μεταφορά υδριδίου.[74] Αυτή η ανακάλυψη ακολουθήθηκε στις αρχές της δεκαετίας του 1940 από την εργασία του Herman Kalckar, ο οποίος καθιέρωσε τη σχέση μεταξύ της οξείδωσης των σακχάρων και της παραγωγής ATP.[75] Αυτό επιβεβαίωσε τον κεντρικό ρόλο του ATP στη μεταφορά ενέργειας που είχε προταθεί από τον Fritz Albert Lipmann το 1941.[76] Αργότερα, το 1949, οι Morris Friedkin και Albert L. Lehninger απέδειξαν ότι το NAD+ συνέδεε τις μεταβολικές οδούς όπως ο κύκλος του κιτρικού οξέος και η σύνθεση του ATP.[77]
Σε έναν αριθμό ενζύμων, το τμήμα που δρα ως συμπαράγοντας σχηματίζεται από μετα-μεταφραστική τροποποίηση ενός μέρους της πρωτεϊνικής αλληλουχίας. Αυτό συχνά αντικαθιστά την ανάγκη για έναν εξωτερικό δεσμευτικό παράγοντα, όπως ένα μεταλλικό ιόν, για τη λειτουργία της πρωτεΐνης. Πιθανές τροποποιήσεις θα μπορούσαν να είναι η οξείδωση αρωματικών υπολειμμάτων, η σύνδεση μεταξύ των υπολειμμάτων, η διάσπαση ή ο σχηματισμός δακτυλίου.[78] Αυτές οι αλλαγές διαφέρουν από άλλες μετα-μεταφραστικές τροποποιήσεις των πρωτεϊνών, όπως η φωσφορυλίωση, η μεθυλίωση ή η γλυκοζυλίωση στο ότι τα αμινοξέα τυπικά αποκτούν νέες λειτουργίες. Αυτό αυξάνει τη λειτουργικότητα της πρωτεΐνης. Τα μη τροποποιημένα αμινοξέα τυπικά περιορίζονται σε αντιδράσεις οξέος-βάσης και η αλλοίωση των υπολειμμάτων μπορεί να δώσει στην πρωτεΐνη ηλεκτροφιλικές θέσεις ή την ικανότητα να σταθεροποιούν τις ελεύθερες ρίζες.[78] Παραδείγματα παραγωγής συμπαράγοντα περιλαμβάνουν τρυπτοφυλλκινόνη της τρυπτοφάνης (tryptophan tryptophylquinone, TTQ), που προέρχεται από δύο πλευρικές αλυσίδες τρυπτοφάνης [79] και την 4-μεθυλιδενο-ιμιδαζολο-5-όνη (MIO), που προέρχεται από ένα μοτίβο Ala-Ser-Gly.[80] Ο χαρακτηρισμός των συμπαραγόντων που προέρχονται από πρωτεΐνες διεξάγεται χρησιμοποιώντας κρυσταλλογραφία ακτίνων Χ και φασματοσκοπία μάζας. Τα δομικά δεδομένα είναι απαραίτητα επειδή η αλληλούχιση δεν αναγνωρίζει εύκολα τις αλλοιωμένες θέσεις.
Ο όρος χρησιμοποιείται σε άλλους τομείς της βιολογίας για να αναφέρεται ευρύτερα σε μόρια μη πρωτεϊνών (ή ακόμα και πρωτεϊνών) που ενεργοποιούν, αναστέλλουν ή απαιτούνται για τη λειτουργία της πρωτεΐνης. Για παράδειγμα, τα προσδέματα όπως ορμόνες που συνδέονται και ενεργοποιούν τους υποδοχείς των πρωτεϊνών ονομάζονται συμπαράγοντες ή συνενεργοποιητές, ενώ τα μόρια που αναστέλλουν τις πρωτεΐνες υποδοχέα ονομάζονται συγκαταστολείς. Ένα τέτοιο παράδειγμα είναι η οικογένεια υποδοχέων συζευγμένων με πρωτεΐνη G, οι οποίοι βρίσκονται συχνά σε αισθητήριους νευρώνες. Η σύνδεση προσδέματος με τους υποδοχείς ενεργοποιεί την πρωτεΐνη G, η οποία στη συνέχεια ενεργοποιεί ένα ένζυμο για να ενεργοποιήσει τον τελεστή.[81] Προκειμένου να αποφευχθεί η σύγχυση, έχει προταθεί ότι τέτοιες πρωτεΐνες που έχουν μεσολαβήσει για ενεργοποίηση ή καταστολή από δέσμευση προσδέτη να αναφέρονται ως συνρυθμιστές.[82]
↑«Physiology and metabolism of essential trace elements: an outline». Clinics in Endocrinology and Metabolism14 (3): 513–43. August 1985. doi:10.1016/S0300-595X(85)80005-0. PMID3905079.
↑«Iron-sulfur protein folds, iron-sulfur chemistry, and evolution». J. Biol. Inorg. Chem.13 (2): 157–70. February 2008. doi:10.1007/s00775-007-0318-7. PMID17992543.
↑«The active species of 'CO2' utilized by formylmethanofuran dehydrogenase from methanogenic Archaea». European Journal of Biochemistry248 (3): 919–24. September 1997. doi:10.1111/j.1432-1033.1997.00919.x. PMID9342247.
↑«The Ninth Sir Hans Krebs Lecture. Compartmentation and communication in living systems. Ligand conduction: a general catalytic principle in chemical, osmotic and chemiosmotic reaction systems». European Journal of Biochemistry95 (1): 1–20. March 1979. doi:10.1111/j.1432-1033.1979.tb12934.x. PMID378655.
↑«The Alcoholic Ferment of Yeast-Juice». Proceedings of the Royal Society B: Biological Sciences78 (526): 369–75. 24 October 1906. doi:10.1098/rspb.1906.0070.
↑«Pyridin, the hydrogen-transferring component of the fermentation enzymes (pyridine nucleotide)». Biochemische Zeitschrift287: E79–E88. 1936. doi:10.1002/hlca.193601901199.
↑«Origins of the concept oxidative phosphorylation». Molecular and Cellular Biochemistry5 (1–2): 55–63. November 1974. doi:10.1007/BF01874172. PMID4279328.