Στην γεωμετρία, το τρίγωνο του Κέπλερ είναι ένα ορθογώνιο τρίγωνο του οποίου τα μήκη των πλευρών είναι διαδοχικοί όροι μιας γεωμετρικής προόδου.
Από το πυθαγόρειο θεώρημα έπεται ότι τα τετράγωνα των πλευρών για αυτή την ειδική περίπτωση ορθογώνιου τριγώνου, επίσης όροι μιας (άλλης) γεωμετρικής προόδου, έστω , και , εξάγονται από τη λύση της δευτεροβάθμιας εξισώσεως
από την οποία προκύπτει ότι ο λόγος των μηκών των πλευρών ενός τριγώνου του Κέπλερ σχετίζεται με τον «χρυσό λόγο»:
και μπορεί να γραφεί ως: , ή κατά προσέγγιση .[1] Τα τετράγωνα των πλευρών, όπως προαναφέρθηκε, είναι επίσης όροι μίας γεωμετρικής προόδου (βλ. σχήμα) με λόγο τη χρυσή τομή.
Τρίγωνα με τέτοιους λόγους πλευρών πήραν το όνομα του Γερμανού μαθηματικού και αστρονόμου Γιοχάνες Κέπλερ (1571–1630), επειδή πρώτος αυτός απέδειξε ότι το τρίγωνο αυτό χαρακτηρίζεται από ένα λόγο ανάμεσα στα μήκη της μικρής κάθετης πλευράς και της υποτείνουσας ίσο με τον χρυσό λόγο[2]. Τα τρίγωνα του Κέπλερ συνδυάζουν δύο βασικές μαθηματικές έννοιες (το πυθαγόρειο θεώρημα και τον χρυσό λόγο) που συνάρπαζαν τον Κέπλερ, όπως δείχνει το παρακάτω απόσπασμα:
Η γεωμετρία έχει δυο μεγάλους θησαυρούς: ο ένας είναι το θεώρημα του Πυθαγόρα και ο άλλος η διαίρεση ενός ευθύγραμμου τμήματος σε μέσο και άκρο λόγο. Το πρώτο μπορεί να συγκριθεί με μια μάζα χρυσού, το δεύτερο μπορούμε να το αποκαλέσουμε ένα πολύτιμο κόσμημα.
Το αντίστροφο, δηλαδή ότι ένα τρίγωνο με μήκη πλευρών 1 , και ή πολλαπλάσιά τους είναι ορθογώνιο, αποδεικνύεται εύκολα αν ξαναγράψουμε το τριώνυμο για τον χρυσό λόγο :
στη μορφή του πυθαγόρειου θεωρήματος:
Για κάθε ζεύγος θετικών πραγματικών αριθμών α και β, ο αριθμητικός μέσος, ο γεωμετρικός μέσος και αρμονικός μέσος τους αποτελούν τα μήκη των πλευρών ενός ορθογώνιου τριγώνου αν και μόνο αν αυτό το τρίγωνο είναι ένα τρίγωνο του Κέπλερ[4].
Το τρίγωνο του Κέπλερ μπορεί να κατασκευασθεί με κανόνα και διαβήτη δημιουργώντας πρώτα ένα «χρυσό ορθογώνιο»:
Ο ίδιος ο Κέπλερ το κατασκεύασε διαφορετικά: Σε ένα γράμμα του προς τον παλιό καθηγητή του Μίκαελ Mästlin έγραψε:
Αν πάνω σε μια γραμμή διαιρεμένη σε μέσο και άκρο λόγο κάποιος κατασκευάσει ένα ορθογώνιο τρίγωνο, τέτοιο ώστε η ορθή γωνία είναι στην κάθετο στο σημείο τομής, τότε η μικρότερη πλευρά θα ισούται με το μεγαλύτερο τμήμα της διαιρεμένης γραμμής.
Σε οποιοδήποτε τρίγωνο του Κέπλερ με πλευρές θεωρείστε:
Τότε η περίμετρος του τετραγώνου () και η περιφέρεια του κύκλου () είναι σχεδόν ίσες, με διαφορά μικρότερη του 0,1%.
Αυτή είναι η μαθηματική προσέγγιση . Ο αριθμός δεν μπορεί να κατασκευαστεί γεωμετρικά (δηλ. με κανόνα και διαβήτη) από τον , γιατί αυτό θα ισοδυναμούσε με την επίλυση του κλασικού άλυτου προβλήματος του τετραγωνισμού του κύκλου. Aυτό, οπως αποδείχτηκε δεν μπορει να γίνει, διότι το π είναι υπερβατικός αριθμός, ενώ το όχι (είναι αλγεβρικός αριθμός).
Σύμφωνα με κάποιες πηγές, τρίγωνα του Κέπλερ εμφανίζονται στον σχεδιασμό αιγυπτιακών πυραμίδων, μεταξύ των οποίων και της Μεγάλης Πυραμίδας της Γκίζας (Πυραμίδα του Χέοπα).[5][6] Ωστόσο, το πιθανότερο είναι πως οι αρχαίοι Αιγύπτιοι δεν γνώριζαν τη μαθηματική σύμπτωση που «δένει» τον αριθμό π και τον χρυσό λόγο φ.[7]