En la teoría de la probabilidad, se conoce como cadena de Márkov o modelo de Márkov a un tipo especial de proceso estocástico discreto en el que la probabilidad de que ocurra un evento depende solamente del evento inmediatamente anterior. Esta característica de incluir una memoria reciente recibe el nombre de propiedad de Markov en contraste con los eventos independientes que no tienen memoria de ningún evento anterior. En un primer artículo de 1906 A. A. Markov definió la "cadena simple" como "una secuencia infinita de variables conectadas de tal modo que para cualquier es independiente de , en el caso de que sea conocida”. Markov llamó a la cadena "homogénea" si la distribución condicional de dado fuese independiente de . También consideró cadenas "complejas (complex en inglés)" en las que "cada número está conectado directamente no sólo con uno, sino con varios números anteriores".[1]
En matemáticas, una Cadena de Markov es un proceso estocástico a tiempo discreto con espacio de estados discreto que para cualquier entero y para cualesquiera satisface
Se dice que una Cadena de Markov es homogénea si la probabilidad de ir del estado al estado en un paso no depende del tiempo en el que se encuentra la cadena, esto es:
para todo y para cualquier .
Si para alguna pareja de estados y para algún tiempo la propiedad antes mencionada no se cumple entonces diremos que la Cadena de Markov es no homogénea.
Sean y dos estados de una Cadena de Markov. La probabilidad de ir del estado en el tiempo al estado en el tiempo se denota por
.
Cuando la cadena es homogénea, esta probabilidad se denota por
,
que representa la probabilidad de pasar del estado al estado en una unidad de tiempo.
Las probabilidades de transición suelen venir dadas mediante números reales. Si estas probabilidades no se conocen de forma precisa, es necesario estimarlas de alguna manera con la incertidumbre que implica cualquier procedimiento de estimación.[2][3] Así, por ejemplo, se pueden estimar mediante intervalos modales[4] o por números borrosos.[5]
Teniendo las probabilidades de transición en un paso ,, si variamos los índices sobre el espacio de estados obtenemos la matriz llamada matriz de probabilidades de transición en un paso, es decir:
donde la entrada representa la probabilidad de pasar del estado al estado en un paso.
Para cualesquiera tales que y para cualesquiera estados se cumple
Como consecuencia de este resultado, la probabilidad de transición en pasos, , está dada por la entrada de la -ésima potencia de la matriz de probabilidades de transición en un paso, es decir
Con lo anterior, el problema de calcular las probabilidades de transición en pasos se convierte en hallar la -ésima potencia de la matriz de probabilidades de transición en un paso, esto es
Para dos estados y en el espacio de estados , diremos que el estado es accesible desde el estado y escribiremos si tal que
si y entonces diremos que el estado se comunica con el estado y escribiremos .
La propiedad "" es una relación de equivalencia. Esta relación induce una partición del espacio de estados. A estas clases de equivalencia las llamaremos clases de comunicación.
Dado un estado , denotaremos a su clase de comunicación como , por lo que si y sólo si .
Se dice que una distribución de probabilidad es estacionaria para una Cadena de Markov con matriz de probabilidades de transición si
En forma matricial lo anterior es equivalente a y significa que si una variable aleatoria inicial tiene una distribución entonces la distribución de también es , es decir, esta distribución no cambia con el paso del tiempo.
Para encontrar una posible distribución estacionaria de una cadena con matriz , un método consiste en resolver el sistema de ecuaciones
La distribución estacionaria puede no ser única o incluso no existir.
Una cadena de Markov se dice recurrente positiva si todos sus estados son recurrentes positivos. Si la cadena es además irreducible es posible demostrar que existe un único vector de probabilidad invariante y está dado por:
Una cadena de Márkov se dice regular (también primitiva o ergódica) si existe alguna potencia positiva de la matriz de transición cuyas entradas sean todas estrictamente mayores que cero.
Cuando el espacio de estados es finito, si denota la matriz de transición de la cadena se tiene que:
donde es una matriz con todos sus renglones iguales a un mismo vector de probabilidad w, que resulta ser el vector de probabilidad invariante de la cadena. En el caso de cadenas regulares, este vector invariante es único.
Si en lugar de considerar una secuencia discreta con indexado en el conjunto de números naturales, se consideran las variables aleatorias con que varía en un intervalo continuo del conjunto de números reales, tendremos una cadena en tiempo continuo. Para este tipo de cadenas en tiempo continuo la propiedad de Márkov se expresa de la siguiente manera:
tal que
Para una cadena de Márkov continua con un número finito de estados puede definirse una matriz estocástica dada por:
La cadena se denomina homogénea si . Para una cadena de Márkov en tiempo continuo homogénea y con un número finito de estados puede definirse el llamado generador infinitesimal como:[6]
Y puede demostrarse que la matriz estocástica viene dada por:
Si consideramos el tiempo atmosférico de una región a través de distintos días, es posible asumir que el estado actual solo depende del último estado y no de toda la historia en sí, de modo que se pueden usar cadenas de Markov para formular modelos climatológicos básicos. Por ejemplo, se han desarrollado modelos de recurrencia de las lluvias basados en cadenas de Markov.[7]
Una importante aplicación de las cadenas de Markov se encuentra en el proceso Galton-Watson. Este es un proceso de ramificación que se puede usar, entre otras cosas, para modelar el desarrollo de una epidemia (véase modelaje matemático de epidemias).
El pagerank de una página web (usado por Google en sus motores de búsqueda) se define a través de una cadena de Markov, donde la posición que tendrá una página en el buscador será determinada por su peso en la distribución estacionaria de la cadena.
Las cadenas de Márkov son utilizadas para proveer una solución analítica a ciertos problemas de simulación, por ejemplo en teoría de colas el Modelo M/M/1[8] es de hecho un modelo de cadenas de Markov.
Son muchos los juegos de azar que se pueden modelar a través de una cadena de Márkov. El modelo de la ruina del jugador (Gambler's ruin), que establece la probabilidad de que una persona que apuesta en un juego de azar finalmente termine sin dinero, es una de las aplicaciones de las cadenas de Márkov en este rubro.
Las cadenas de Márkov se pueden utilizar en modelos simples de valuación de opciones para determinar cuándo existe oportunidad de arbitraje, así como en el modelo de colapsos de una bolsa de valores o para determinar la volatilidad de los precios. En los negocios, las cadenas de Márkov se han utilizado para analizar los patrones de compra de los deudores morosos, para planear las necesidades de personal y para analizar el reemplazo de equipo.
Se emplean cadenas de Márkov en teoría de genética de poblaciones, para describir el cambio de frecuencias génicas en una población pequeña con generaciones discretas, sometida a deriva genética. Ha sido empleada en la construcción del modelo de difusión de Motō Kimura.
Diversos algoritmos de composición musical usan cadenas de Márkov, por ejemplo el software Csound o Max. Uno de los compositores que usó esta técnica en sus composiciones fue Iannis Xenakis con su obra Analoguique A et B (1958–59).
↑ abBasharin, Gely P.; Langville, Amy N.; Naumov, Valeriy A. (2004). «The Life and Work of A. A. Markov». Linear Algebra and its Applications(en inglés)386: 3-26. Consultado el 31 de marzo de 2010.
↑Buckley, J.J.; Eslami, E. (2002). Fuzzy Markov Chains: Uncertain Probabilities. Mathware and Soft Computing 9, 33–41.
↑Villacorta, P.J.; Verdegay, J.L. FuzzyStatProb: An R Package for the Estimation of Fuzzy Stationary Probabilities from a Sequence of Observations of an Unknown Markov Chain. Journal of Statistical Software 2016, 71, 1–27, https://doi.org/10.18637/jss.v071.i08
↑Adillon, R.; Lambert, J.; Mármol, M. (2020). Modal interval probability: Application to Bonus-Malus Systems. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 28, 837–851, https://doi.org.10.1142/S0218488520500361
↑Villacorta Iglesias, P.J.; González-Vila Puchades, L. and Andrés-Sánchez, J. de. (2021). Fuzzy Markovian Bonus-Malus Systems in Non-Life Insurance. Mathematics, 9(4), 347, https://doi.org/10.3390/math9040347
A.A. Márkov. "Rasprostranenie zakona bol'shih chisel na velichiny, zavisyaschie drug ot druga". Izvestiya Fiziko-matematicheskogo obschestva pri Kazanskom universitete, 2-ya seriya, tom 15, pp. 135–156, 1906.
A.A. Markov. "Extension of the limit theorems of probability theory to a sum of variables connected in a chain". reprinted in Appendix B of: R. Howard. Dynamic Probabilistic Systems, volume 1: Markov Chains. John Wiley and Sons, 1971.
Leo Breiman. Probability. Original edition published by Addison-Wesley, 1968; reprinted by Society for Industrial and Applied Mathematics, 1992. ISBN 0-89871-296-3. (See Chapter 7.)
J.L. Doob. Stochastic Processes. New York: John Wiley and Sons, 1953. ISBN 0-471-52369-0.
S. P. Meyn and R. L. Tweedie. Markov Chains and Stochastic Stability. London: Springer-Verlag, 1993. ISBN 0-387-19832-6. en línea: [1] . Second edition to appear, Cambridge University Press, 2009.
Booth, Taylor L. (1967). Sequential Machines and Automata Theory (1st edición). Nueva York: John Wiley and Sons, Inc. Library of Congress Card Catalog Number 67-25924. Extensive, wide-ranging book meant for specialists, written for both theoretical computer scientists as well as electrical engineers. With detailed explanations of state minimization techniques, FSMs, Turing machines, Markov processes, and undecidability. Excellent treatment of Markov processes pp. 449ff. Discusses Z-transforms, D transforms in their context.
Kemeny, John G.; Mirkil, Hazleton; Snell, J. Laurie; Thompson, Gerald L. (1959). Finite Mathematical Structures (1st edición). Englewood Cliffs, N.J.: Prentice-Hall, Inc. Library of Congress Card Catalog Number 59-12841. Classical text. cf Chapter 6 Finite Markov Chains pp. 384ff.