Diabrotica

Diabrotica


Taxonomía
Reino: Animalia
Filo: Arthropoda
Clase: Insecta
Orden: Coleoptera
Superfamilia: Chrysomeloidea
Familia: Chrysomelidae
Subfamilia: Galerucinae
Género: Diabrotica
Chevrolat, 1837

Diabrotica es un género de escarabajos de la familia Chrysomelidae. El género fue descrito por Chevrolat en 1837.

"Siempre, durante el transcurso de nuestro experimento, nos ha llamado la atención la extraordinaria voracidad de Diabrotica speciosa respecto a Cucurbita andreana [el zapallito amargo]. Sobre zapallitos amargos de unos 90 gramos, partidos por la mitad y dejados sobre el suelo, se llegaban a concentrar hasta 300 insectos por fruto. Lo que demuestra a las claras la posibilidad de utilizar esta especie como planta-trampa en la lucha contra esta plaga de las hortalizas." (Contardi 1939)[1]

Tallamy et al. (2002)[2]​ trabajando en Estados Unidos hallaron la misma atracción de los frutos del zapallito amargo de Cucurbita andreana sobre la especie emparentada Diabrotica virgifera vigifera, plaga de maíz. Sus hallazgos, curiosos debido a que las cucurbitacinas que le dan el sabor amargo son tóxicas para la mayoría de los insectos,[cita 1]​ están en sintonía con los de otros autores que encontraron la gran atracción ejercida por las cucurbitáceas ricas en cucurbitacinas sobre los escarabajos crisomélidos de las tribus Diabrocitina y Aulacophorina[cita 2][cita 3][cita 4]​, que pueden detectarla desde largas distancias[cita 5][cita 6][cita 7]​ y las secuestran para su propia protección[cita 8][cita 9][cita 10]

Se usan trampas contra estos insectos (utilizando como cebo la esencia floral de C. maxima simplificada),[cita 11]​ que se emplean hoy en día,[cita 12]​ si bien, como en los experimentos con zapallitos amargos cortados,[cita 8]​ el 99% de los insectos atraídos son machos[cita 13]​ que transfieren las cucurbitacinas a la hembra a través del espermatóforo y ella de allí a los huevos.

Lista de especies:[43][44]

Citas

[editar]
  1. Tallamy et al. (2005[3]​): (p.67) "[Cucurbitacins have] Noxious effects on other [other than Diabrocitina and Aulacophorina] insects" (Nielsen et al. 1977,[4]​ Tallamy et al. 1997a.[5]​)
  2. Tallamy et al. (2005[3]​): (p.67) "For more than a century, researchers have noted the curious attraction of adult luperine chrysomelids in the subtribes Diabrocitina and Aulacophorina to cucurbit species rich in the bitter compounds collectivelly called cucurbitacins (Webster 1895,[6]​ Contardi 1939,[1]​ Metcalf et al. 1980[7]​)".
  3. Tallamy et al. (2005):[3]​ (p.72) "As discussed above, cucurbitacins are phagostimulants for many luperine adults (Metcalf et al. 1980,[7]​ Nishida and Fukami 1990,[8]​ Tallamy et al. 1997b[9]​) and larvae (DeHeer and Tallamy 1991[10]​)".
  4. Tallamy et al.̠ (2005[3]​) (p.70-71) "Cucurbitacins are produced in at least some tissues of all members of the Cucurbitaceae (Gibbs 1974,[11]​ Guha and Sen 1975,[12]​ Jeffrey 1980[13]​) and a few species in other plant families (Curtis and Meade 1971,[14]​ Pohlman 1975,[15]​ Dryer and Trousdale 1978,[16]​ Thorne 1981.[17]​) In most species they are concentrated in roots and fruits, with lesser amounts in stems and leaves. Because of their extreme bitterness, cucurbitacins are thought to be involved in plant protection against herbivores (Metcalf 1985,[18]​ Tallamy and Krischik 1989.)[19]​ Nevertheless, cucurbitacins are phagostimulants for both adults (Metcalf et al. 1980)[7]​ and larvae (DeHeer and Tallamy 1991[10]​) of several luperine species in the subtribes Aulacophorina and Diabroticina (Table 4.1) and can have important ecological consequences for plants that possess them (Tallamy and Krischik 1989[19]​). Adult luperines can detect cucurbitacins in nanogram quantities and readily devour bitter plant material (Metcalf 1994,[20]​ Tallamy et al. 1998.[21]​) In addition to WCR [western corn rootworm, Diabrotica virgifera virgifera], cucurbitacins influence the behaviour of several important crop pests, including Diabrotica balteata LeConte, the banded cucumber beetle, Diabrotica barberi Smith and Lawrence, the northern corn rootworm, Diabrotica undecimpunctata howardi Barber, the southern corn rootworm, and Diabrotica speciosa, a crop pest in Central and South America." Tabla 4.1 lista los insectos fagostimulados por cada cucurbitacina (incluye datos no publicados).
  5. Tallamy et al. (2005[3]​): (p.67) "[Diabroticina and Aulacophorina] can locate cucurbits over long distances by tracking flower and wound volatiles, and... cucurbitacins are phagostimulants for Diabroticites that... cause them to eat anything containing these compounds (Sinha and Krishna 1970,[22]​ Metcalf et al. 1980[7]​)."
  6. Tallamy et al. (2005[3]​): (p.81-82) "Electroantennogram (EAG) recording was used to identify extract compounds attractive to Diabrocites, citing: Hibbard et al. (1997b[23]​), Cossé and Baker (1999[24]​)."
  7. Tallamy et al. (2005[3]​): (p.82) "As noted above, despite specialization on the Poaceae, adult WCR [western corn rootworm, Diabrotica virgifera virgifera] and D. barberi feed compulsively on bitter cucurbitacins when presented the opportunity, and they are attracted to volatiles from Cucurbita blossoms (Metcalf and Metcalf 1992[25]​ and references therein)."
  8. a b Tallamy et al. (2005[3]​): (p.71-72). "Studies have shown that, when WCR [western corn rootworm, Diabrotica virgifera virgifera] eat crystalline cucurbitacins for 2 days, they excrete 85% of the material and permanently sequester the remainder in their fat bodies, cuticles, haemolymph, spermatophores and developing eggs (Ferguson and Metcalf 1985,[26]​ Andersen et al. 1988,[27]​ Tallamy et al. 2000).[28]​ There is good evidence that, regardless of the cucurbitacin configuration eaten, beetles transform it through glycosilation, hydrogenation, desaturation and acetylation into 23,24-dihydrocucurbitacin D (Andersen et al. 1988,[27]​ Nishida et al. 1992.)[29]​ There are decided defensive benefits to cucurbitacin sequestration. Beetles that have eaten cucurbitacins become highly distasteful and are readily rejected by predators such as mantids, mice and finches (Ferguson and Metcalf 1985,[26]​ Nishida and Fukami 1990,[8]​ DW Tallamy, unpublished data). Sequestered cucurbitacins may also discourage parasitoids such as tachinid flies in the genus Celatoria, although this has never been tested. Moreover, when cucurbitacins have been sequestered in eggs and larvae, both of which are denizens of pathogen-rich damp soil, survival after exposure to the entomopathogen Metarhizium anisopliae is significantly improved (Tallamy et al. 1998[21]​). This may explain why females shunt 79% of the cucurbitacins that are not excreted into their eggs or the mucus coating of the eggs (Tallamy et al. 2000[28]​)."
  9. Tallamy et al. (2005[3]​): (p.73) "Luperines [Chrisomelidae] such as WCR [western corn rootworm, Diabrotica virgifera virgifera], have been described as pharmacophagous insects (Nishida and Fukami 1990[8]​) because they search for particular phytochemicals for purposes other than primary metabolism or host recognition (Boppré 1990[30]​)."
  10. Tallamy et al. (2005[3]​): (p.73) "Whether obtained through pharmacophagy or specialization on cucurbits, cucurbitacins persist in the cuticle, fat bodies and haemolymph (Ferguson et al. 1985,[31]​ Andersen et al. 1988[27]​) and provide protection against predators (Ferguson and Metcalf 1985,[26]​ Nishida and Fukami 1990[8]​) and/or pathogens (Tallamy et al. 1998.[21]​) Perhaps because of their defensive benefits, both cucurbitacins and pyrrolizidine alkaloids have also become an integral component of the reproductive behaviour of participating species (Dussourd et al. 1991,[32]​ LaMunyon and Eisner 1993,[33]​ Tallamy et al. 2000).[28]​ In both cases, the pharmacophagous agent is consumed directly by females and/or is sequestered by males and passed whithin spermatophores to females. Females, in turn, shunt the majority of these materials to developing eggs".
  11. Tallamy et al. (2005[3]​): (p.81) "Diabrotica spp., in general, have been associated with blossoms of varying Cucurbita spp. (Fronk and Slater 1956,[34]​ Howe and Rhodes 1976,[35]​ Bach 1977,[36]​ Fisher et al. 1984[37]​). Andersen and Metcalf (1987[38]​)... (found they preferred C. maxima over the other species)" (p.81) "Andersen (1987[39]​) identified 22 of the 31 major components of C. maxima floral aroma. Metcalf and Lampman (1991[40]​ and references therein) evaluated them for attraction to diabroticite beetles... Metcalf and Metcalf (1992[25]​ and references therein) (developed a 3-component blend as a highly simplified Cucurbita blossom volatile aroma). (p.83) "Metcalf and Metcalf (1992[25]​)... added a methoxy group to natural compounds (that) dramatically increased its effectiveness in attracting adult beetles.... It is these more attractive methoxy analogues of natural compounds which are generally used as lures today".
  12. Tallamy et al. (2005[3]​): (p.83-84-85) it mentions some real lures and if they are commercially availables, the most effective a new trap developed by Trécé (Salinas, California) containing buffalo gourd root powder.
  13. Tallamy et al.: (2005[3]​) (p.72)"Despite the benefits to female WCR [western corn rootworm, Diabrotica virgifera virgifera] from eating bitter cucurbit tissues, it is males rather than females who actively seek these compounds in nature. In a field trial quantifying the sex ratio of beetles that came to cucurbitacin-rich fruits of Cucurbita andreana, Tallamy et al. (2002[2]​) found that 99% of the 224 WCR [western corn rootworm, Diabrotica virgifera virgifera] found at the fruits over a 5-day period were males. This result concurs with the male-biased sex ratios frequently found in cucurbitacin traps (Shaw et al. 1984;[41]​ Fielding and Ruesink 1985[42]​). Apparently females rely on males for their primary source of cucurbitacins (Tallamy et al. 2000[28]​). Males sequester 89% of the cucurbitacins not excreted after ingestion in their spermatophores and pass them to females during copulation. Whether such behaviour imparts a mating advantage to WCR [western corn rootworm, Diabrotica virgifera virgifera] males has not been investigated."

Referencias

[editar]
  1. a b Contardi, GH. 1939. Estudios genéticos en Cucurbita y consideraciones agronómicas. Physis 18:331-347.
  2. a b Tallamy, D.W., Powell, B.E. y McClafferty, J.A. (2002) Male traits under cryptic female choice in the spotted cucumber beetle (Coleoptera: Chrysomelidae). Behavioral Ecology 13, 511–518
  3. a b c d e f g h i j k l m Tallamy DW, BE Hibbard, TL Clark and JJ Gillespie. 2005. Western Corn Rootworm, Cucurbits and Cucurbitacins. In: S Vidal et al. (eds.) 2005. Western Corn Rootworm: Ecology and Management CAB International. Chapter 4. «Copia archivada». Archivado desde el original el 29 de noviembre de 2014. Consultado el 23 de noviembre de 2014. 
  4. Nielsen JK, Larsen M and Sorenson HJ (1977) Cucurbitacins E and I in Iberis amara feeding inhibitors for Phyllotreta nemorum. Phytochemistry 16:1519-1522.
  5. Tallamy DW, Stull J, Erhesman N and Mason CE. 1997. Cucurbitacins as feeding and oviposition deterrents in nonadapted insects. Environmental Entomology 26:678-688.
  6. Webster FM (1895) On the probable origin, development and diffusion of North American species of the genus Diabrotica. Journal of the New York Entomological Society 3:158-166.
  7. a b c d Metcalf RL, Metcalf RA y Rhodes AM (1980) Cucurbitacins as kairomones for diabroticite beetles. Proceedings of the National Academy of Sciences USA 17:3769-3772.
  8. a b c d Nishida R and Fukami H (1990) Sequestration of distasteful compounds by some pharmacophagous insects. Journal of Insect Physiology 40:913-931.
  9. Tallamy, D.W., Gorski, P.M. and Pesek, J. (1997b) Intra- and interspecific genetic variation in the gustatory perception of cucurbitacins by diabroticite rootworms (Coleoptera: Chrysomelidae). Environmental Entomology 26, 1364–1372.
  10. a b DeHeer, C.J. y Tallamy, D.W. (1991) Cucumber beetle larval affinity to cucurbitacins. Environmental Entomology 20, 775–788
  11. Gibbs, R.D. (1974) Chemotaxonomy of Flowering Plants 2. McGill-Queen’s University Press. Montreal and London, pp. 829–830, 843, 1255–1259
  12. Guha, J. and Sen, S.P. (1975) The cucurbitacins – a review. Journal of Plant Biochemistry 2, 12–28
  13. Jeffrey, C. (1980) A review of the Cucurbitaceae. Botanical Journal of the Linnean Society 81, 233–247.
  14. Curtis, P.S. and Meade, P.M. (1971) Cucurbitacins from Crusiferae. Phytochemistry 10, 3081–3083
  15. Pohlman, J. (1975) Die Cucurbitacine in Bryonia alba und Bryonia dioica. Phytochemistry 14, 1587–1589
  16. Dryer, D.L. y Trousdale, E.K. (1978) Cucurbitacins in Purshia tridentate. Phytochemistry 17, 325–326
  17. Thorne, R.F. (1981) Phytochemistry and angiosperm phylogeny, a summary statement. En: Young, D.A. and Seigler, D.F. (eds) Phytochemistry and Angiosperm Phylogeny. Praeger, New York, pp. 233–295.
  18. Metcalf, R.L. (1985) Plant kairomones and insect pest control. Bulletin III Natural History Survey 35, 175
  19. a b Tallamy, D.W. y Krischik, V.A. (1989) Variation and function of cucurbitacins in Cucurbita: an examination of current hypotheses. American Naturalist 133, 766–786
  20. Metcalf, R.L. (1994) Chemical ecology of Diabroticites. En: Jolivet, P.H. , Cox, M.L. y Petitpierre, E. (eds) Novel Aspects of the Biology of the Chrysomelidae. Kluwer Academic Publishers, Boston, Massachusetts, pp. 153–169
  21. a b c Tallamy, D.W., Whittington, D.P., Defurio, F., Fontaine, D.A., Gorski, P.M. y Gothro, P. (1998) The effect of sequestered cucurbitacins on the pathogenicity of Metarhizium anisopliae (Moniliales: Moniliaceae) on spotted cucumber beetle eggs and larvae (Coleoptera: Chrysomelidae). Environmental Entomology 27, 366–372
  22. Sinha AK, y Krishna SS (1970). Further studies on the feeding behavior Aulacophora foveicollis on cucurbitacin. Journal of Economic Entomology 63:333-334.
  23. Hibbard, B.E., Randolph, T.L., Bernklau, E.J. y Bjostad, L.B. (1997b) Electro-antennogram-active components of buffalo gourd root powder for western corn rootworm adults (Coleoptera: Chrysomelidae). Environmental Entomology 26, 1136–1142.
  24. Cossé, A.A. y Baker, T.C. (1999) Electrophysiologically and behaviorally active volatiles of buffalo gourd root powder for corn rootworm beetles. Journal of Chemical Ecology 25, 51–66.
  25. a b c Metcalf, R.L. y Metcalf, E.R. (1992) Plant Kairomones in Insect Ecology and Control. Routledge, Chapman and Hall, New York
  26. a b c Ferguson, J.E. y Metcalf, R.L. (1985) Cucurbitacins: plant derived defense compounds for Diabroticina (Coleoptera: Chrysomelidae). Journal of Chemical Ecology 11, 311–318.
  27. a b c Andersen JF, RD Plattner y D Weisleder. 1988. Metabolic transformations of cucurbitacins by Diabrotica virgifera virgifera LeConte and D. undecimpunctata howardi Barber. Insect Biochemistry 19:71-78.
  28. a b c d Tallamy, D.W., Gorski, P.M. y Burzon, J.K. (2000) The fate of male-dervied cucurbitacins in spotted cucumber beetle females. Journal of Chemical Ecology 26, 413–427
  29. Nishida, R., Yokoyama, M. y Fukami, H. (1992) Sequestration of cucurbitacin analogs by New and Old World chrysomelids leaf beetles in the tribe Luperini. Chemoecology 3, 19–24
  30. Boppré, M. (1990) Lepidoptera and pyrrolizidine alkaloids: exemplification of complexity in chemical ecology. Journal of Chemical Ecology 16, 165–180
  31. No hay tal "Ferguson et al. 1985" Puede haberse referido a "Ferguson et al. 1983": Ferguson, J.E., Metcalf, E.R., Metcalf, R.L. y Rhodes, A.M. (1983) Influence of cucurbitacin content in cotyledons of Cucurbitaceae cultivars upon feeding behavior of Diabroticina beetles (Coleoptera: Chrysomelidae). Journal of Economic Entomology 76, 47–57
  32. Dussourd, D.E., Harvis, C.A., Meinwald, J. and Eisner, T. (1991) Pheromonal advertisement of a nuptial gift by a male moth (Utethesia ornatrix). Proceedings of the National Academy of Sciences, USA, 88, 9224–9227.
  33. LaMunyon, C.W. and Eisner, T. (1993) Postcopulatory sexual selection in an arctiid moth (Utethesia ornatrix). Proceedings of the National Academy of Sciences USA 90, 4689–4692
  34. Fronk, W.D. y Slater, J.H. (1956) Insect fauna of cucurbit flowers. Journal of the Kansas Entomological Society 29, 141–145
  35. Howe, W.L. y Rhodes, A.M. (1976) Phytophagous insect association with Cucurbita in Illinois. Environmental Entomology 5, 747–751
  36. Bach, C.E. (1977) Distribution of Acalymma vittata and Diabrotica virgifera (Coleoptera: Chrysomelidae) on Cucurbita. Great Lakes Entomologist 10, 123–125.
  37. Fisher, J.R., Branson, T.F. y Sutter, G.R. (1984) Use of common squash cultivars, Cucurbita spp., for mass collection of corn rootworm beetles, Diabrotica spp. (Coleoptera: Chrysomelidae). Journal of the Kansas Entomological Society J 57, 409–412
  38. Andersen JF y RL Metcalf. 1987. Factors influencing distribution of Diabrotica spp. in blossoms of cultivated Cucurbita spp. Journal of Chemical Ecology 13:681-699.
  39. Andersen JF. 1987. Composition of the floral odor of Cucurbita maxima Duchesne (Cucurbitaceae). Journal of Agricultural and Food Chemistry 35:60-62.
  40. Metcalf, R.L. y Lampman, R.L. (1991) Evolution of diabroticite rootworm beetle (Chrysomelidae) receptors for Cucurbita blossom volatiles. Proceedings of the National Academy of Sciences USA 88, 1869–1872
  41. Shaw, J.T., Ruesink, W.G., Briggs, S.P. y Luckman, W.H. (1984) Monitoring populations of corn rootworm beetles (Coleoptera: Chrysomelidae) with a trap baited with cucurbitacins. Journal of Economic Entomology 77, 1495–1499
  42. Fielding, D.J. y Ruesink, W.G. (1985) Varying amounts of bait influences numbers of western and northern corn rootworms (Coleoptera: Chrysomelidae) caught in cucurbitacins traps. Journal of Econonomic Entomology 78, 1138–1144
  43. «Diabrotica». Encyclopedia of Life (en inglés). EOL.org. Consultado el 4 de febrero de 2015. 
  44. Hallan, Joel Kenneth (6 de junio de 2010). «Synopsis of the described Coleoptera of the World». Biology Catalog de la Universidad de Texas A&M (en inglés). Archivado desde el original el 2016. 
  45. a b Brontabel, 2013-Derunkov-Konstantinov

Enlaces externos

[editar]