La epicicloide es la curva generada por la trayectoria de un punto perteneciente a una circunferencia (generatriz) que rueda, sin deslizamiento, por el exterior de otra circunferencia (directriz). Es un tipo de ruleta cicloidal.
Considerando la figura podemos escribir:
(1)
(2)
con y, además, como la circunferencia rueda sin deslizamiento, los arcos l1 y l2 son iguales, i.e: . De aquí se tiene que
Sustituyendo β y γ en las ecuaciones [1] y [2] tenemos la ecuación paramétrica de la epicicloide:
Cuando es un número racional, i.e., , siendo p y q números enteros, las epicicloides son curvas algebraicas.
Cuando r1=r2, i.e, obtenemos una cardioide.
Cuando r1=2r2, i.e, obtenemos una nefroide.
La directriz es una recta | ||||
d = r | d < r | d > r | ||
cicloide | trocoide | |||
cicloide normal | cicloide acortada | cicloide alargada |
La directriz es una circunferencia | ||||
d = r | d < r | d > r | ||
La generatriz es exterior a al directriz | epicicloide | epitrocoide | ||
epicicloide normal | epicicloide acortada | epicicloide alargada | ||
La generatriz es interior a al directriz | hipocicloide | hipotrocoide | ||
hipocicloide normal | hipocicloide acortada | hipocicloide alargada | ||
La directriz es interior a al generatriz | pericicloide | peritrocoide | ||
pericicloide normal | pericicloide acortada | pericicloide alargada |