Función rampa

La función rampa es una función elemental real de un solo argumento, continua y diferenciable en todo su dominio excepto en un punto (inicio de la rama) fácilmente computable a partir de la función mínimo o la función valor absoluto.

Las principales aplicaciones prácticas de esta función se dan en ingeniería (procesamiento digital de señales, plasticidad, etc.). El término "función rampa" se debe a la forma de su representación gráfica.

Definición

[editar]

La función rampa (denotada de diferentes maneras en la literatura científica: )

Y que se define de esta forma:

Puede definirse de diferentes maneras equivalentes:

  1. (en términos de la función valor absoluto)
  2. (en términos de la función máximo)
  3. (en términos de la función unitaria de Heaviside)

Algunas formas menos elementales de definirla son:

  1. (primitiva de la función unitaria de Heaviside)
  2. (producto de convolución)

Propiedades analíticas

[editar]

No-negativa

[editar]

En todo su dominio de definición, la función rampa es no-negativa (positiva o cero)

y, por tanto, coincide con su valor absoluto:

Derivada

[editar]

Su derivada (en el sentido de la teoría de distribuciones) es la función unitaria de Heaviside:

A su vez la función unitaria de Heaviside puede escribirse en términos de la función signo (las igualdades anteriores son ciertas en el sentido de las distribuciones).

Convexa

[editar]

La función rampa es una función convexa ya que:

(*)

para cada t en [0,1]. Esto puede demostrarse procediendo por casos, es decir, se consideran los casos (a) x > 0 e y > 0, (b) x > 0 e y ≤ 0, (c) x ≤ 0 e y > 0 y (d) x ≤ 0 e y ≤ 0. En los casos (a) y (d) se cumple la igualdad en (*) cuando t en (0,1), mientras que en los casos (b) y (c) se tiene una desigualdad estricta (ya que t y (1 - t) son siempre números positivos.

Transformada de Fourier

[editar]

La transformada de Fourier de la función rampa viene dada por:

Donde δ(x) es la delta de Dirac (en esta fórmula, aparece su derivada).

Transformada de Laplace

[editar]

La transformada de Laplace de coincide con la transformada de ya que para ambas funciones coinciden:

Propiedades algebraicas

[editar]

Invariancia de la función

[editar]

La función rampa es idempotente, lo cual significa que la composición consigo misma es idéntica a la función original

  • Demostración:
donde se ha usado la propiedad de que la función coincide con su valor absoluto.

Suma y producto

[editar]
  • La función rampa de una suma de puede expresarse como:

  • La función rampa de un producto puede expresarse como:

donde denota a la función signo.

Véase también

[editar]

Referencias

[editar]