Si son números positivos y, a su vez, entonces se cumple
donde G es la media geométrica; Obsérvese que la media potencial de grado negativo no excede a la media geométrica y que la media potencial de grado positivo no es menor que la media geométrica.
En el caso de dos pesos aproximados de una cosa, se aplica la media geométrica. Si hay dos pesadas para el mismo objeto que dan 1,085 kg y 0.995. Se halla el la media geométrica, g = 1.034, aproximado a gramos ( o milésimos)
Se conocen las medidas de los radios de 4 círculos que son 6, 8, 11 y 15 cm respectivamente. Hállese el radio de círculo cuya área sea el promedio de las áreas circulares propuestas.[8]
Sean r1= 6, r2 = 8, r3 = 11 y r4 = 15.
Se aplica la media cuadrática
y para los valores respectivos resulta el valor del radio:
lo que difiere de la media aritmética de los radios que sería
Se conocen las medidas de las aristas de 3 cubos que son 8, 10 y 12. Hállese la medida de un cubo que represente el volumen promedio de los cubos dados.[9]
Sean a1 = 8, a2 = 10 y a3 = 12
En este caso se va a aplicar la media potencial de grado 3
y con los valores propuestos resulta la medida de la arista:
resultado diferente a la media aritmética de las medidas de las aristas que sería
Si una canoa va en un río, aguas abajo, a la velocidad de y aguas arriba a la velocidad de , hallar la velocidad promedio. En este caso aplicamos la fórmula del promedio armónico para los valores ,
, para los datos dados, resulta distinto al promedio aritmético .