En teoría de grupos, el normalizador de un subconjunto S de un grupo G es el mayor subgrupo de G para el cual la acción de conjugación deja invariante a S. Cuando el conjunto consta de un solo elemento, se habla entonces de un centralizador.
Si G es un grupo y S un subconjunto de G, el normalizador de S está definido por
|
En donde es el conjunto definido como .
En particular, si S es un subgrupo de G, entonces N(S) es el mayor subgrupo de G en el cual S es un subgrupo normal.
El resultado más importante es que el normalizador de un subconjunto siempre es un subgrupo.
Si G es un grupo y S un subconjunto de G, entonces el normalizador N(S) es un subgrupo de G.
|
Demostración
|
Para demostrar que es un subgrupo, basta demostrar que el producto donde son dos elementos cualesquiera de también es elemento de , esto es, hayque demostrar que para todo el elemento también pertenece a S.
Primero demostramos que si entonces ya que para cualquier existe un que satisfaga , pero entonces , es decir,
Procedemos ahora a la prueba principal. Desarrollando
observamos que a está conjugando al elemento , el cual a su vez es la conjugación por de s.
Pero como , entonces y por tanto . Denotemos por a y entonces la expresión original se reescribe como que, al estar a en , también pertenece a S.
Concluimos entonces que y por tanto es un subgrupo.
|
Un caso de particular interés es cuando el subconjunto es al mismo tiempo un subgrupo.
Si H es un subgrupo de G, entonces H es un subgrupo normal de N(H). Además, N(H) es el mayor subgrupo con esta propiedad.
|
Demostración
|
Si H es un subgrupo de G, entonces el normalizador es precisamente el conjunto de todos los elementos g del grupo para los cuales , que es precisamente la condición que define a un subgrupo normal.
|
Como consecuencia del teorema anterior, un subgrupo H de G es normal en G si y sólo si N(H) = G.
Si H es un subgrupo de G entonces el número de clases conjugadas de H en G es igual al índice del normalizador en el grupo: y por tanto divide al orden del grupo cuando éste es finito.
Además, dos clases de conjugación coinciden, , si y sólo si
|
- Según Lang, se consideran estas dos más:
- Si K es un subgrupo del normalizador N(H), KH es un grupo y H es normal en KH.
- El normalizador de H es el mayor subgrupo de G en el que H es normal.
- El normalizador de cualquier subgrupo normal es el grupo completo. En particular N(<e>) y N(G) son ambos iguales a G.
- El subgrupo H de generado por el ciclo no es normal, por tanto su normalizador no es el grupo completo de permutaciones. En este caso, el normalizador de H es el subgrupo generado por las permutaciones .
- Baumslag, B.; Chandler, B.: Teoría de grupos (1972), Mc Graw-Hill de México, impreso en Colombia.
- Zaldívar, Felipe: Introducción a la teoría de grupos (2009), Sociedad Matemática Mexicana-Reverté ediciones.
- Lang, Serge: Álgebra (1973), Aguilar, Madrid, primera reimpresión.