En matemáticas, la prueba M de Weierstrass o criterio mayorante de Weierstrass es un criterio para comprobar la convergencia uniforme de una serie de funciones de variable real o compleja.
|
Demostración |
Para cada , la serie converge, según el criterio de comparación. En consecuencia, converge (absolutamente) para todo . Llamemos al límite puntual de la serie.
Recordemos que para probar que la serie converge uniformemente a en tenemos que probar que la sucesión de sumas parciales (que en este caso es una sucesión de funciones) converge uniformemente a en . Para esto podemos ver que la sucesión converge a . Para cada , tenemos: Por tanto, . Por tanto, converge uniformemente a en . |
Una versión más general de la prueba M de Weierstrass se mantiene si el codominio de las funciones es cualquier espacio de Banach, en cuyo caso la afirmación puede ser reemplazada por , donde es la norma definida en el espacio de Banach.