La tirosina hidroxilasa o tirosina 3-monooxigenasa (EC 1.14.16.2) es la enzima responsable de catalizar la conversión del aminoácido L-tirosina a dihidroxifenilalanina (DOPA). La DOPA es el precursor de la dopamina, que a su vez es también el precursor de la noradrenalina y la adrenalina. En humanos, la tirosina hidroxilasa es codificada por el gen TH.[1]
La enzima, una oxigenasa, se encuentra en el citosol de todas las células que sintetizan catecolaminas. La reacción inicial es el paso limitante en la producción de catecolaminas.
La enzima es altamente específica, no aceptando derivados indólicos (lo cual es frecuente en muchas otras enzimas involucradas en la producción de catecolaminas).
La tirosina hidroxilasa (TH), también denominada tirosina 3-monooxigenasa, pertenece a la familia de hidroxilasas de aminoácidos aromáticos. Estas enzimas utilizan tetrahidrobiopterina como coenzima y hierro (II) no unido a un grupo hemo como cofactor.[2]
La TH tiene una masa atómica de 240 kDa y está formada por cuatro unidades idénticas de 60kDa (homotetrámero).
El gen de la TH en humanos está formado por 14 exones separados por 13 intrones, que tras su traducción da lugar a 4 isoformas distintas que difieren en su estructura peptídica.[3]
En cada subunidad del tetrámero se pueden identificar dos dominios, uno catalítico y uno regulador. En dominio catalítico que corresponde al extremo C-terminal es el más conservado en la evolución y donde se encuentra unido el cofactor, y donde interaccionan la coenzima y el sustrato durante la catálisis. El dominio regulador está en el extremo N-terminal y tienen un efecto inhibidor sobre la actividad enzimática. Esta inhibición desaparece cuando se activa la enzima mediante fosforilación de residuos de serina situados en Ser-8, Ser-19, Ser-31, Ser-40 y Ser-153. Estas fosforilaciones se llevan a cabo por proteína quinasas que siguen distintos mecanismos de regulación.[3]
La tirosina hidroxilasa se puede inhibir con la α-metiltirosina (Metirosina), aunque su administración no sea un medio eficaz para regular la síntesis de noradrenalina. Este fármaco se usa poco, pero se ha utilizado con éxito en el tratamiento del feocromocitoma y de la hipertensión.
↑Nagatsu T (1995). «Tyrosine hydroxylase: human isoforms, structure and regulation in physiology and pathology». Essays Biochem.30: 15-35. PMID8822146.
↑Haavik, J., Toska, K., Tyrosine Hydroxylase and Parkinson’s Disease. Molecular Neurobiology, 1998. 16(3) :p.285-309.
↑ abGoldstein, M., Lieberman, A., The role of the regulatory enzymes of catecholamine synthesis in Parkinson’s disease. NEUROLOGY, 1992. 42(4) :p.8-10.
↑Hedstrand H, Ekwall O, Haavik J, Landgren E, Betterle C, Perheentupa J, Gustafsson J, Husebye E, Rorsman F, Kämpe O (enero de 2000). «Identification of tyrosine hydroxylase as an autoantigen in autoimmune polyendocrine syndrome type I». Biochem. Biophys. Res. Commun.267 (1): 456-61. PMID10623641. doi:10.1006/bbrc.1999.1945.
↑Ono M, Okamoto M, Kawabe N, Umezawa H, Takeuchi T (marzo de 1971). «Oudenone, a novel tyrosine hydroxylase inhibitor from microbial origin». J. Am. Chem. Soc.93 (5): 1285-6. PMID5545929. doi:10.1021/ja00734a054.
↑Ayukawa S, Takeuchi T, Sezaki M, Hara T, Umezawa H (mayo de 1968). «Inhibition of tyrosine hydroxylase by aquayamycin». J. Antibiot.21 (5): 350-3. PMID5726288.
Masserano JM, Weiner N (1983). «Tyrosine hydroxylase regulation in the central nervous system.». Mol. Cell. Biochem. 53-54 (1-2): 129-52. PMID6137760. doi:10.1007/BF00225250.
Meloni R, Biguet NF, Mallet J (2002). «Post-genomic era and gene discovery for psychiatric diseases: there is a new art of the trade? The example of the HUMTH01 microsatellite in the Tyrosine Hydroxylase gene.». Mol. Neurobiol.26 (2-3): 389-403. PMID12428766. doi:10.1385/MN:26:2-3:389.
Haycock JW (1990). «Phosphorylation of tyrosine hydroxylase in situ at serine 8, 19, 31, and 40.». J. Biol. Chem.265 (20): 11682-91. PMID1973163.
Craig SP, Buckle VJ, Lamouroux A, et al. (1986). «Localization of the human tyrosine hydroxylase gene to 11p15: gene duplication and evolution of metabolic pathways.». Cytogenet. Cell Genet.42 (1-2): 29-32. PMID2872999. doi:10.1159/000132246.
Grima B, Lamouroux A, Boni C, et al. (1987). «A single human gene encoding multiple tyrosine hydroxylases with different predicted functional characteristics.». Nature326 (6114): 707-11. PMID2882428. doi:10.1038/326707a0.
Kaneda N, Kobayashi K, Ichinose H, et al. (1987). «Isolation of a novel cDNA clone for human tyrosine hydroxylase: alternative RNA splicing produces four kinds of mRNA from a single gene.». Biochem. Biophys. Res. Commun.146 (3): 971-5. PMID2887169. doi:10.1016/0006-291X(87)90742-X.
O'Malley KL, Anhalt MJ, Martin BM, et al. (1988). «Isolation and characterization of the human tyrosine hydroxylase gene: identification of 5' alternative splice sites responsible for multiple mRNAs.». Biochemistry26 (22): 6910-4. PMID2892528. doi:10.1021/bi00396a007.
Le Bourdellès B, Boularand S, Boni C, et al. (1988). «Analysis of the 5' region of the human tyrosine hydroxylase gene: combinatorial patterns of exon splicing generate multiple regulated tyrosine hydroxylase isoforms.». J. Neurochem.50 (3): 988-91. PMID2892893. doi:10.1111/j.1471-4159.1988.tb03009.x.
Ginns EI, Rehavi M, Martin BM, et al. (1988). «Expression of human tyrosine hydroxylase cDNA in invertebrate cells using a baculovirus vector.». J. Biol. Chem.263 (15): 7406-10. PMID2896667.
Kobayashi K, Kaneda N, Ichinose H, et al. (1988). «Structure of the human tyrosine hydroxylase gene: alternative splicing from a single gene accounts for generation of four mRNA types.». J. Biochem.103 (6): 907-12. PMID2902075.
Coker GT, Vinnedge L, O'Malley KL (1989). «Characterization of rat and human tyrosine hydroxylase genes: functional expression of both promoters in neuronal and non-neuronal cell types.». Biochem. Biophys. Res. Commun.157 (3): 1341-7. PMID2905129. doi:10.1016/S0006-291X(88)81022-2.
Vulliet PR, Woodgett JR, Cohen P (1984). «Phosphorylation of tyrosine hydroxylase by calmodulin-dependent multiprotein kinase.». J. Biol. Chem.259 (22): 13680-3. PMID6150037.
Zhou QY, Quaife CJ, Palmiter RD (1995). «Targeted disruption of the tyrosine hydroxylase gene reveals that catecholamines are required for mouse fetal development.». Nature374 (6523): 640-3. PMID7715703. doi:10.1038/374640a0.