Röntgenfluorestsents (ingl k X-ray fluorescence, XRF) on karakteristlik sekundaarsete röntgenikiirte emissioon ainest, mida on ergastatud kõrge energiaga röntgenikiirtega või gammakiirgusega.
Kõnealust nähtust kasutatakse laialdaselt elementanalüüsis ja analüütilises keemias, näiteks metallide, klaaside, keraamika ja ehitusmaterjalide uurimiseks, uurimistööks geoloogias ja kriminalistikas ning kunstiteoste,[1] näiteks maalide uurimiseks.[2][3]
Aine kiiritamisel lühilainelise röntgenikiirgusega või gammakiirgusega võib aset leida aines olevate aatomite ionisatsioon. Ionisatsiooni käigus lüüakse aatomist välja üks või rohkem elektrone ning see leiab aset, kui aatomile langeb kiirgus, mille energia ületab aatomi ionisatsioonienergiat. Röntgenikiired ja gammakiired on piisavalt suure energiaga, et lüüa välja elektrone ka aatomi sisemistelt orbitaalidelt. Elektroni sel viisil eemaldamine muudab aatomi ebastabiilseks ning kõrgematel orbitaalidel asuvad elektronid "langevad" madalamale, et täita tekkinud auk. Elektroni siirdumisel kõrgemalt energiatasemelt madalamale vabaneb energia footoni kujul, kusjuures footoni energia on võrdne energiatasemete vahega, mille vahel liikus elektron. Seeläbi kiirgab aine elektromagnetlaineid, mille energia on karakteristlik aines olevatele aatomitele. Termin fluorestsents on kasutusel nähtuste juures, kus kiirguse neeldumine aines põhjustab kiirguse emissiooni ainest nii, et emiteeritud kiirgus on erineva (üldiselt madalama) energiaga neeldunud kiirgusest.
Igal elemendil on oma karakteristlike energiatasemetega orbitaalid. Kui primaarsest kiirgusallikast pärinev energeetiline footon lööb aatomist välja sisekihi elektroni, siis liigub tekkinud tühjale kohale elektron mõnest välimisest kihist. On piiratud arv viise, kuidas see saab juhtuda, nagu on illustreeritud joonisel 1, Peamised üleminekud on tähistatud järgnevalt: L→K üleminekut nimetatakse traditsiooniliselt Kα, M→K üleminek on Kβ, M→L üleminek on Lα jne. Iga selline üleminek tekitab fluorestsents-footoni, mille karakteristlik energia on võrdne energianivoode vahega, mille vahel toimus elektroni üleminek. Nii tekkinud fluorestsentskiirguse lainepikkuse saab arvutada Plancki valemist:
kus h on Plancki konstant, c valguse kiirus ja E on footoni energia.
Fluorestsentskiirgust on võimalik analüüsida footoneid energia järgi sorteerides (energia dispersiivne röntgenikiirgus, EDX) või kiirguse lainepikkusi eristades (lainepikkuse-dispersiivne röntgenspektroskoopia, WDXS). Peale sorteerimist on võimalik iga karakteristliku kiirguse spektrijoone intensiivsus siduda otseselt talle vastava elemendi kogusega aines. Joonisel 2 on näitena toodud tüüpilised teravad fluorestsentsi spektrijooned, mis on saadud lainepikkuse-dispersiivsel meetodil.
Aatomite ergastamiseks on tarvis kiirgusallikat, kusjuures kiirguse energia peab olema piisav tugevalt seotud sisekihtide elektronide väljalöömiseks aatomitest. Enamasti kasutatakse traditsioonilist röntgenitoru, sest nende väljundkiirgus on reguleeritav ning võimsus piisavalt suur. Tavaliselt on röntgenitorude töövahemik 20–60 kV. Pidev spekter tekib nn pidurduskiirguse (ehk pärsskiirguse ehk brehmsstralungi) tõttu, mille põhjus on torus liikuvate suure energiaga elektronide pidev aeglustumine anoodmaterjalis. Tüüpiline röntgenitoru väljundspekter on toodud joonisel 3.
Alternatiivselt võib kasutada ka gammakiirguse allikaid, mis ei vaja suurt vooluallikat ja on seetõttu kasutatav väiksemates, kaasaskantavates instrumentides.
Kui kiirgusallikaks on sünkrotron või röntgenikiirgus on fokuseeritud, võib kiir olla väga kitsas ja väga intensiivne. Tulemuseks on võimekus saada informatsiooni ruumilise lahutusega alla mikromeetri.
Energia dispersiivse analüüsi puhul suunatakse uuritavast ainest tulevad fluorestsents-röntgenikiired detektorisse, mis tekitab pideva jaotuse impulsse, kusjuures iga impulsi pinge on võrdeline registreeritud footonite energiaga. Signaali töödeldakse mitmekanalilise analüsaatoriga, mis tekitab akumuleeruva digitaalse spektri, mida on võimalik töödelda.
Lainepikkuse-dispersiivse analüüsi korral suunatakse uuritavast ainest tulevad fluorestsents-röntgenikiired difraktsioonivõre-laadsesse monokromaatorisse. Kasutatav difraktsioonivõre on enamasti monokristall. Langemisnurka varieerides on võimalik valida soovitud väike lainepikkuste vahemik. Lainepikkus avaldub Braggi seadusega:
kus d on kristalli pinnaga paralleelsete aatomkihtide vahekaugus.
Energia dispersiivse analüüsi puhul on dispersioon ja detekteerimine üks tegevus. Kasutatakse erinevaid tahkiseloendureid, näiteks PIN-diood või Räni triivi detektor (dopeeritud räni). Mõlema tööpõhimõte on sama: pealelangev röntgen-footon ioniseerib hulga detektori aatomeid, kusjuures tekkinud laeng on võrdeline pealelangeva footoni energiaga. Laeng kogutakse ja protsess kordub järgmise footoni jaoks. Detektori kiirus on kriitilise tähtsusega, sest kõik mõõdetud laengud peavad olema põhjustatud sama footoni poolt, et tema energiat korrektselt määrata. Energiaspekter jagatakse väikesteks diskreetseteks ühikuteks ja loendatakse registreeritud impulsside arvu iga spektriühiku kohta. Sellised detektorid erinevad lahutusvõime ja kiiruse poolest. Proportsionaalsed loendurid lahutusvõimega mõnesaja eV kandis on oma võimekuselt detektorite madalamas otsas, järgnevad PIN-dioodid ning räni triivi detektorid on kõrgeima võimekusega.
Lainepikkuse-dispersiivses analüüsis juhitakse monokromaatori tekitatud kindlal lainepikkusel kiirgus edasi fotoelektronkordistisse, mis loendab footonid ühekaupa seadme läbimisel. Loendur on röntgen-footonite poolt ioniseeritavat gaasi täis kamber. Keskne elektrood on harilikult näiteks 1700 V pinge all (kambriseinte suhtes). Iga footon tekitab gaasi ioniseerimise tõttu mõõdetava elektrivoolu selles elektriväljas. Mõõdetud signaal võimendatakse ja muundatakse akumuleeruvaks digitaalseks loenduseks.
Fluorestsentsi tekkimise protsess on ebaefektiivne ja sekundaarkiirgus on oluliselt nõrgem primaarkiirest. Lisaks on sekundaarkiirgus seda madalama energiaga (pikema lainepikkusega), mida kergematest elementidest ta pärineb. Sekundaarkiirgus on ka madala läbivusega ning tema trajektoor muutub märkimisväärselt, kui kiir liigub läbi õhu. Seetõttu hoitakse täppismõõtmise puhul teekonda allikast uuritava aineni ja edasi detektorini vaakumis (u 10 Pa). See tähendab, et praktikas peab enamus seadmest asuma vaakumkambris. Liikuvate osade haldamine vaakumis ning vajadus uuritavat objekti kiiresti seadmesse asetada ja välja võtta, ilma kogu süsteemi vaakumit oluliselt mõjutamata, seab seadme konstruktsioonile teatavad piirid ja lisab ehitusele märkimisväärselt keerukust. Vähemnõudlikes rakendustes võib kasutada näiteks heeliumiga täidetud kambrit, mis tähendab teatavat kiirguse intensiivsuse kadu. Seda tuleb kasutada ka uurimisobjekti korral, mis on volatiilne, st võib näiteks hakata vaakumkambris aurustuma.
Primaarse röntgenikiire kasutamiste sekundaarse fluorestsentskiirguse saamiseks uurimisobjektist pakkusid esimestena välja Richard Glocker ja Hans-Wilhelm Schreiber aastal 1928.[4] Tänapäeval kasutatakse seda meetodit mittedestruktiivse analüütilise tehnikana ning ka protsessi- ja kvaliteedikontrolli instrumendina tööstusharudes, mis tegelevad eri materjalide väljakaevamise või töötlemisega. Teoreetiliselt on kergeim element, mida selle meetodiga saab mõõta, berüllium (aatomarv Z=4), kuid instrumendist tingitud piirangute ja madalate kiirgussaagistega kergemate elementide puhul, on sageli keeruline analüüsida naatriumist (Z=11) kergemaid elemente.
Energia dispersiivse röntgenikiirguse spektromeetria (EDX või EDS) korral võimaldab detektor mõõta footoni energia detekteerimise hetkel. Ajalooliselt on detektorid baseerunud ränist pooljuhtidel, liitiumiga dopeeritud ränikristallidel või ülipuhastel räniplaatidel.
Detektor koosneb 3–5 mm paksusest ränist siirdetüüpi p-i-n dioodist, mis on pingestatud −1000 V all. Liitiumiga dopeeritud keskosa moodustab mittejuhtiva i-kihi, kus Li kompenseerib aktseptorid, mis muidu teeksid kihist p-tüüpi pooljuhi. Röntgen-footon tekitab detektorist läbimisel hulga elektron-auk paare ning see põhjustab pingemuutuse impulsi. Piisavalt madala juhtivuse saavutamiseks hoitakse detektorit madalal temperatuuril ning parima lahutusvõime saamiseks kasutatakse vedela lämmastikuga jahutamist. Mõningase lahutusvõime kaoga leppides saab kasutada ka oluliselt mugavamat Peltier' efektil põhinevat jahutust.[5]
Kui ülipuhtad madala juhtivusega räniplaadid (ingl k wafers) said kergesti ja suhteliselt odavalt saadavaks, siis võimaldasid nad Peltier' efekti abil jahutades valmistada odava ja mugava detektori. Kuigi vedela lämmastikuga Si(Li) detektor tagab endiselt parima lahutusvõime (st võime eristada erineva lähedase energiaga footoneid).
Märkimisväärne arvutusvõimsus kulub selle peale, et teha korrektuure impulsside liiga lähestikku sattumise tõttu ning saada kätte andmeid kehvasti lahutatud spektritest. Kõnealused korrektsioonid põhinevad enamasti empiirilistel seostel, mis võivad ka ajas muutuda, seega on tarvis vigade korrigeerimisele pühendada pidevat tähelepanu, et saada piisava täpsusega andmeid.
Energia dispersiivsed (EDX) spektromeetrid erinevad lainepikkuse-dispersiivsetest (WDX) spektromeetritest selle poolest, et nad on väiksemad, ehituselt lihtsamad ja väiksema komponentide arvuga. Seevastu on ka nende täpsus ja lahutusvõime madalamad. EDX-spektromeetreid saab kasutada ka miniatuursete röntgenitorudega või gammakiirguse allikatega, mis võimaldab teha odavamaid seadmeid ning ka kaasaskantavaid seadmeid. Seda tüüpi kaasaskantavaid seadmeid kasutatakse näiteks mänguasjade pliisisalduse kontrollimiseks, vanametalli sorteerimiseks ning majapidamises kasutatavate värvide pliisisalduse mõõtmiseks. Kaasaskantavad XRF seadmed välimõõtmisteks kaaluvad alla 2 kg ning võimaldavad mõõta näiteks pliisisaldust liivas 2 ppm (osakest miljoni osakese kohta). Skaneeriva elektronmikroskoobi ja EDX kooskasutamine on võimaldanud laiendada selliseid uuringuid ka orgaanilistele ainetele.
Lainepikkuse-dispersiivses (WDX) spektromeetrias lahutatakse footonid enne detekteerimist monokristallis difraktsiooni teel. Kuigi vahel kasutatakse WDX-i ka laia lainepikkuste vahemiku mõõtmiseks, on nad üldiselt seatud mõõtma ainult huvipakkuvate elementide teadaolevaid spektrijooni.
Uuritav materjaliproov valmistatakse enamasti lameda tüki või kettana, läbimõõdu või laiusega u 20–50 mm. See asetatakse proovialusele, mis on fikseeritud teatud kaugusele röntgenitorust. Kuna röntgenikiirguse, nagu elektromagnetkiirguse üldiselt, intensiivsus allub pöördruutseosele teepikkusega, peab proovi asetus ja lamedus olema mõõtmise jaoks piisavalt täpne, et tagada korratav röntgenikiirguse voog läbi uuritava proovi. Lamedate proovitükkide saamine sõltub uuritavast materjalist: metalle võib masintöödelda, mineraale võib peeneks pulbriks uhmerdada ja siis lapikuks pressida ning klaase võib samuti vajalikku kujusse töödelda. Lame ja kogu materjalitükki adekvaatselt iseloomustav pind on veel vajalik ka selleks, et kergemate elementide sekundaarkiirgus võib pärineda vaid mõnest mikromeetrist pealmisest kihist. Et pinna ebaregulaarsustest veelgi paremini vabaneda, pannakse proov vahel ka pöörlema umbes 5–20 pööret minutis.
Elementanalüüsil kasutatavad spektrijooned valitakse nende intensiivsuse, konkreetse instrumendi abil mõõdetavuse ja teiste joontega kattuvuse puudumise järgi. Tüüpilisemad jooned ja nende lainepikkused on alljärgnevad:
Element | Joon | Lainepikkus,
nm |
Element | Joon | Lainepikkus, nm | Element | Joon | Lainepikkus, nm | Element | Joon | Lainepikkus, nm | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Li | Kα | 22,8 | Ni | Kα1 | 0,1658 | I | Lα1 | 0,3149 | Pt | Lα1 | 0,1313 | |||
Be | Kα | 11,4 | Cu | Kα1 | 0,1541 | Xe | Lα1 | 0,3016 | Au | Lα1 | 0,1276 | |||
B | Kα | 6.76 | Zn | Kα1 | 0,1435 | Cs | Lα1 | 0,2892 | Hg | Lα1 | 0,1241 | |||
C | Kα | 4,47 | Ga | Kα1 | 0,1340 | Ba | Lα1 | 0,2776 | Tl | Lα1 | 0,1207 | |||
N | Kα | 3,16 | Ge | Kα1 | 0,1254 | La | Lα1 | 0,2666 | Pb | Lα1 | 0,1175 | |||
O | Kα | 2,362 | As | Kα1 | 0,1176 | Ce | Lα1 | 0,2562 | Bi | Lα1 | 0,1144 | |||
F | Kα1,2 | 1,832 | Se | Kα1 | 0,1105 | Pr | Lα1 | 0,2463 | Po | Lα1 | 0,1114 | |||
Ne | Kα1,2 | 1,461 | Br | Kα1 | 0,1040 | Nd | Lα1 | 0,2370 | At | Lα1 | 0,1085 | |||
Na | Kα1,2 | 1,191 | Kr | Kα1 | 0,09801 | Pm | Lα1 | 0,2282 | Rn | Lα1 | 0,1057 | |||
Mg | Kα1,2 | 0,989 | Rb | Kα1 | 0,09256 | Sm | Lα1 | 0,2200 | Fr | Lα1 | 0,1031 | |||
Al | Kα1,2 | 0,834 | Sr | Kα1 | 0,08753 | Eu | Lα1 | 0,2121 | Ra | Lα1 | 0,1005 | |||
Si | Kα1,2 | 0,7126 | Y | Kα1 | 0,08288 | Gd | Lα1 | 0,2047 | Ac | Lα1 | 0,0980 | |||
P | Kα1,2 | 0,6158 | Zr | Kα1 | 0,07859 | Tb | Lα1 | 0,1977 | Th | Lα1 | 0,0956 | |||
S | Kα1,2 | 0,5373 | Nb | Kα1 | 0,07462 | Dy | Lα1 | 0,1909 | Pa | Lα1 | 0,0933 | |||
Cl | Kα1,2 | 0,4729 | Mo | Kα1 | 0,07094 | Ho | Lα1 | 0,1845 | U | Lα1 | 0,0911 | |||
Ar | Kα1,2 | 0,4193 | Tc | Kα1 | 0,06751 | Er | Lα1 | 0,1784 | Np | Lα1 | 0,0888 | |||
K | Kα1,2 | 0,3742 | Ru | Kα1 | 0,06433 | Tm | Lα1 | 0,1727 | Pu | Lα1 | 0,0868 | |||
Ca | Kα1,2 | 0,3359 | Rh | Kα1 | 0,06136 | Yb | Lα1 | 0,1672 | Am | Lα1 | 0,0847 | |||
Sc | Kα1,2 | 0,3032 | Pd | Kα1 | 0,05859 | Lu | Lα1 | 0,1620 | Cm | Lα1 | 0,0828 | |||
Ti | Kα1,2 | 0,2749 | Ag | Kα1 | 0,05599 | Hf | Lα1 | 0,1570 | Bk | Lα1 | 0,0809 | |||
V | Kα1 | 0,2504 | Cd | Kα1 | 0,05357 | Ta | Lα1 | 0,1522 | Cf | Lα1 | 0,0791 | |||
Cr | Kα1 | 0,2290 | In | Lα1 | 0,3772 | W | Lα1 | 0,1476 | Es | Lα1 | 0,0773 | |||
Mn | Kα1 | 0,2102 | Sn | Lα1 | 0,3600 | Re | Lα1 | 0,1433 | Fm | Lα1 | 0,0756 | |||
Fe | Kα1 | 0,1936 | Sb | Lα1 | 0,3439 | Os | Lα1 | 0,1391 | Md | Lα1 | 0,0740 | |||
Co | Kα1 | 0,1789 | Te | Lα1 | 0,3289 | Ir | Lα1 | 0,1351 | No | Lα1 | 0,0724 |
Esmapilgul võib röntgen-footonite loenduste arv paista kergesti konverteeritav elementide kontsentratsiooniks aines: WDX eristab jooned efektiivselt, sekundaarsete footonite genereerimine on võrdeline elemendi hulgaga aines. Paraku võivad uuritavast ainest lähtuvad footonid olla ka teistsugust päritolu. Nad langevad kolme kategooriasse:
Kõik elemendid neelavad röntgenikiiri mingil määral. Igal elemendil on karakteristlik neeldumisspekter. Neeldumine mõjutab sekundaarsete röntgenikiirte väljumist ainest. Näiteks räni massneeldumise koefitsient alumiiniumi K-alfa lainepikkusel on 50 m²/kg, samas kui raual on see 377 m²/kg. See tähendab, et teatud kindla alumiiniumi kontsentratsiooni korral rauas saame umbes seitse korda väiksema signaali, kui sama alumiiniumi kontsentratsiooni korral ränis. Õnneks on need massneeldumiskoefitsiendid hästi teada ning arvesse võetavad. Sellegipoolest, mitmeelemendilise proovi analüüsil on vaja eelnevalt teada, mis elemendid selles sisalduvad.
Võimendumine leiab aset, kui raskema elemendi sekundaarkiirgus on piisavalt energeetiline, et ergastada täiendav sekundaarkiirgus kergemalt elemendilt. Seda nähtust on võimalik modelleerida ja arvesse võtta.
Makroskoopilised efektid pärinevad materjaliproovi ebahomogeensustest ning pinnaomadustest, mis ei ole materjali iseloomustavad ega korratavad. Ideaalne uuritav proov oleks homogeenne ja isotroopne, kuid tegelikud proovid ei pruugi seda olla. Mitme kristallilise komponendi segud võivad anda neeldumisefekte, mis ei ole teooriast arvutatavad. Kui pulber pressitakse tabletiks, kogunevad peenemad mineraalid pinnale. Sfäärilised osakesed kipuvad enam pinna lähedale tulema, kui nurgelised. Masintöödeldud metalliproovidel kipuvad sulami pehmemad komponendid "määrduma" üle pinna laiali. Kuivõrd need on proovi valmistamisel tekkinud artefaktid, ei saa neid teoreetiliste arvutuste abil arvesse võtta, vaid tuleb kalibreerimise teel arvestada.
Veel mõned parandid, mida sageli arvestatakse, on näiteks taustamüra ja joonte kattumise korrektsioonid. XRF spektri taustamüra pärineb peamiselt primaarkiire hajumisest proovi pinnal. Joonte kattuvus on levinud probleem, kuid sellest saab sageli üle, mõõtes vähem intensiivseid, samas mittekattuvaid jooni, kuid teatud juhtudel on korrektsioonid siiski vajalikud. Näiteks naatriumi mõõtmisel on Kα joon ainus mõõdetav, ning see kattub tsingi Lβ (L2-M4) joonega. Seega kui proovis on tsinki, tuleb seda analüüsida eraldi, et seejärel korrigeerida saadud naatriumi väärtust.
On võimalik tekitada karakteristlikke sekundaarseid röntgenikiiri kasutades mingit muud pealelangevat kiirt:
Kui materjali kiiritada röntgenikiirega, emiteerib materjal lisaks fluorestsentskiirgusele ka muud kiirgust, mida võib kasutada teistes analüüsimeetodites:
Elektronide ergastatud olekust põhiolekusse naasmine tekitab ka Auger elektrone, kuid Auger elektronide spektroskoopia kasutab üldjuhul elektronkiirt ergastajana.
Konfokaalmikroskoopia XRF on uuem tehnika, mis võimaldab kontrollida ka kiire materjalisse mineku sügavust, lisaks kiire asukohale pinnal. Näiteks analüüsides üksteise peale kantud värvikihte maalidel.[6]