Lehendabizi, gas idealetan partikulen abiadura deskribatzeko erabili zen, partikulak edukiontzi baten barruan askatasun osoz mugitzen baitira inolako elkarrekintzarik izan gabe, elkarren arteko energia eta bultzada elkarren artean edo bere ingurune termikoarekin trukatzen dituzten bat-bateko talkak izan ezik. Esan beharrekoa da, testuinguru honetan “partikula” hitzak partikula gaseosoei egiten diela erreferentzi bakarrik (atomoei eta molekulei). Honez gain, partikulen sistema oreka termodinamikoan[1] dagoela suposatzen da. Partikula horien energiek Maxwell–Boltzmannen distribuzioa deritzonari jarraitzen diote, eta abiaduren banaketa estatistikoa, partikulen energiak eta energia zinetikoa berdinduz lortzen da.
Berez, matematikoki, Maxwell-Boltzmann banaketa hiru askatasun graduko X (chi) distribuzioa da (abiadura bektorearen osagaiak espazio euklidear batean), abiadurak neurtzen dituen parametro eskala batean. Abiadura horien unitateak honako zatiketa honen unitateen proportzionalak dira:
Maxwell-Boltzmann distribuzioa gasen teoria zinetikotik ondorioztatu zen. Teoria honek, oinarrizko propietate gaseoso asko azaltzen ditu modu sinplifikatuan, presioa edota difusioa batik bat[3]. Maxwell-Boltzmann banaketa, funtsean, hiru dimentsioko partikulen abiadureei aplikatzen zaien arren, partikulen abiaduraren moduluaren menpe baino ez dago. Probabilitate banaketak ea zein abiadura den probableena adierazten du. Partikulek distribuziotik ausaz aukeratutako abiadura izango dute, baina probabilitate handiagoa izango dute tarte batean dauden abiadurak izateko beste batzuetakoak baino. Gasen teoria klasikoa, aldiz, gas idealetarako erabiltzen da, baina, egia esan, gas horiek gas errealen idealizazio bat baino ez dira. Benetako gasetan, Maxwell-Boltzmannen formaren desberdina den abiadura banaketa izan dezakete gasek, hainbat efekturen ondorioz (esate baterako, Van der Waalsen indarrak). Dena dela, dentsitatea txikiagotuta daukaten gasek gas idealen antzera jokatzen dute. Ondorioz, Maxwell-Boltzmann distribuzioa hurbilketa erabilgarria da gas horientarako[4].
Distribuzioa Maxwellek proposatu zuen lehenengo aldiz 1860ean[5]. Hamar urte beranduago, Boltzmannek Maxwellek proposatutako lana osatu zuen, distribuzioen esanahi fisikoa zein zen proposatuz.
Intereseko sistemak partikula kopuru handia daukala suposatuz, hiru dimentsioko abiadura espazioaren elementu infinitesimal baten barruan dauden partikulen frakzioa, magnitudeko abiadura bektore batean zentratua, da, non
Abiadura espazioko elementua gisa idatzi daiteke koordenatu kartesiarretan edo koordenatu esferikoetan, non angelu solidoaren elementua den. banaketa funtzioa dela jakinik, funtzioa normalizatzean izango da espazio osoan integratuz.
Goiko funtzioa bi dimentsiotan integratuz eta -rekiko, banaketa funtzio Maxwelliarra eskuratu dezakegu norabide bakarrean higitzen diren partikulen sisteman. Norabidea bada
sistema isotropikoa denez, angelu solidoarekiko integratu daiteke eta probabilitate banaketa hurrengo funtzio gisa idatzi[6]
Maxwell eta Boltzmann-en banaketa funtziotik zenbait parametro estatistiko lor daitezke, probabilitate handiagoko abiadura, batezbesteko abiadura eta batezbesteko abiadura koadratikoa, hain zuzen ere[7].
Probabilitate handiagoko abiadura, vp, edozein molekulak ( masa berekoak) sisteman izan dezakeen probabilitate handieneko abiadura da eta banaketa funtzioaren maximoak ematen du, zerora berdinduz.