Abelin lause on matematiikan lause, joka käsittelee potenssisarjojen suppenemista. Lause on nimetty kehittäjänsä, norjalaisen matemaatikon Niels Henrik Abelin, mukaan.[1]
Olkoon
potenssisarja, missä ja ovat reaalilukuisia vakioita ja sarjan kehityskeskus.
Abelin lauseen mukaan:
i) Jos potenssisarja suppenee eräällä , niin se suppenee itseisesti jokaisella reaaliluvulla , jolle , eli joka on lähempänä lukua kuin luku .
ii) Jos potenssisarja ei suppene itseisesti eräällä , niin se hajaantuu jokaisella reaaliluvulla , jolle , eli joka on kauempana luvusta kuin luku .