Komputationaalinen neurotiede eli laskennallinen neurotiede (joskus myös teoreettinen neurotiede tai matemaattinen neurotiede) tarkoittaa on neurotieteen alan haara, joka soveltaa matematiikkaa, tietojenkäsittelytiedettä ja teoreettista analyysiä keskushermoston kehityksen, rakenteen, fysiologian ja kongitiivisten taitojen ymmärtämiseksi.[1][2][3][4]
Komputationaalinen neurotiede käyttää laskennallisia simulaatioita matemaattisten mallien todentamiseen ja ratkaisemiseen.[5] Täten komputationaalinen neurotiede voidaan luokitella teoreettisen neurotieteen alan haaraksi.[6] Toisaalta näihin kahteen alaan kuitenkin suhtaudutaan synonyymisesti. Matemaattisen neurotieteen termiä käytetään myös joskus korostamaan alan kvantitatiivista luonnetta.[7]
Komputationaalinen neurotiede keskittyy biologisesti mahdollisten neuronien eli hermosolujen sekä hermostojärjestelmien kuvaamiseen niiden fysiologian ja dynamiikan kautta. Tämän takia komputationaalinen neurotiede ei siksi suoraan käsittele biologisesti epärealistisia malleja, joita käytetään yhteyksissä kuten konnektionismi, säätöteoria, kybernetiikka, kvantitatiivinen psykologia, koneoppiminen, tekoäly ja laskennallinen oppimisteoria.[8][9][10] Molempien alojen välillä on keskinäistä inspiraatiota eikä niiden välillä ole aina tiukkaa rajaa.[11][12][13] Laskennallisen neurotieteen mallien abstraktiotaso riippuu tutkimuksen laajuudesta ja siitä, millä biologisilla elementeillä tarkasteltava alue analysoidaan.
Teoreettisen neurotieteen mallit pyrkivät jäljittelemään biologisen järjestelmän olennaisia piirteitä monilla spatiaalis-temporaalisilla asteikoilla, hermosolujen solukalvon sähkötoiminnoist ja kemiallisesta kytkennästä verkkovärähtelyjen, sarakkeellisen ja topografisen arkkitehtuurin, ytimien, aina psykologisten kykyjen kuten muistin, oppimisen ja käyttäytymisen tasolle. Nämä komputationaaliset mallit asettavat hypoteeseja, jotka voidaan suoraan testata biologisilla tai psykologisilla kokeilla.
Termi 'komputationaalinen neurotiede' otettiin käyttöön Eric L. Schwartzin toimesta, joka järjesti konferenssin vuonna 1985 Carmelissa, Kaliforniassa, Systems Development Foundationin pyynnöstä, tarjotakseen yhteenveto alan nykytilasta, jota siihen asti kutsuttiin eri nimillä, kuten hermomallinnus, aivoteoria ja hermoverkot. Tämän määrittelevän kokouksen tulokset julkaistiin vuonna 1990 kirjassa Computational Neuroscience.[14] Ensimmäisen vuosittaisen avoimen kansainvälisen laskennalliseen neurotieteeseen keskittyvän kokouksen järjestivät James M. Bower ja John Miller San Franciscossa, Kaliforniassa vuonna 1989..[15] Ensimmäinen laskennallisen neurotieteen tutkijakoulutusohjelma perustettiin nimellä Computational and Neural Systems Ph.D. ohjelma California Institute of Technologyssa vuonna 1985.
Alan varhaiset historialliset juuret[16] voidaan jäljittää Louis Lapicquen, Hodgkin & Huxleyn, Hubelin ja Wieselin sekä David Marrin työhön. Lapicque esitteli integrointi- ja laukaisumallin neuronista merkittävässä artikkelissa, joka julkaistiin vuonna 1907,[17] ja malli on edelleen suosittu keinotekoisten hermoverkkojen tutkimuksessa yksinkertaisuutensa vuoksi (katso viimeaikainen katsaus[18]).).
Noin 40 vuotta myöhemmin Hodgkin ja Huxley kehittivät jännitepuristin ja loivat ensimmäisen biofysikaalisen mallin toimintapotentiaalista. Hubel ja Wiesel löysivät, että ensisijaisen näköaivokuoren neuronit, jotka ovat ensimmäinen aivokuoren alue, joka käsittelee verkkokalvolta tulevaa tietoa, omaavat suuntautuneita reseptiivisiä kenttiä ja ovat järjestäytyneet kolumneiksi.[19] David Marrin työ keskittyi neuronien välisiin vuorovaikutuksiin, ehdottaen laskennallisia lähestymistapoja tutkia, kuinka toiminnalliset neuroniryhmät hippokampuksessa ja neokorteksissa vuorovaikuttavat, tallentavat, käsittelevät ja välittävät tietoa. Biofysikaalisesti realististen neuronien ja dendriittien laskennallinen mallinnus alkoi Wilfrid Rallin työstä, joka käytti kaapeliteoriaa ensimmäisessä moniosaisessa mallissa.
Tutkimus laskennallisessa neurotieteessä voidaan karkeasti jaotella useisiin tutkimuslinjoihin. Useimmat laskennalliset neurotieteilijät tekevät tiivistä yhteistyötä kokeellisten tutkijoiden kanssa analysoidakseen uusia tietoja ja luodakseen uusia malleja biologisista ilmiöistä.
Jopa yksi hermosolu omaa monimutkaisia biofysikaalisia ominaisuuksia ja voi suorittaa laskentatoimintoja.[20] Hodgkinin ja Huxleyn alkuperäinen malli käytti vain kahta jänniteherkkää virtaa (jänniteherkät ionikanavat ovat glykoproteiinimolekyylejä, jotka ulottuvat lipidikaksoiskalvon läpi ja sallivat ionien kulkea tietyissä olosuhteissa aksoklemman läpi), nopeavaikutteista natriumia ja sisäänpäin korjaavaa kaliumia. Vaikka malli onnistui ennustamaan toimintapotentiaalin ajoituksen ja kvalitatiiviset ominaisuudet, se ei kuitenkaan pystynyt ennustamaan monia tärkeitä ominaisuuksia, kuten sopeutumista ja shunttausta. Tutkijat uskovat nyt, että jänniteherkkiä virtoja on laaja valikoima, ja näiden virtojen erilaisten dynamiikkojen, modulointien ja herkkyyksien vaikutukset ovat tärkeä tutkimusaihe laskennallisessa neurotieteessä.[21]
Myös monimutkaisten dendriittien laskennallisia toimintoja tutkitaan intensiivisesti. Laaja kirjallisuus käsittelee, kuinka erilaiset virrat vuorovaikuttavat hermosolujen geometristen ominaisuuksien kanssa.[22]
Useita ohjelmistopaketteja, kuten GENESIS ja NEURON, mahdollistavat realististen hermosolujen nopean ja systemaattisen in silico -mallinnuksen. Henry Markramin johtama Blue Brain -projekti École Polytechnique Fédérale de Lausanne -yliopistossa pyrkii rakentamaan biophysikaalisesti yksityiskohtaisen simulaation kortikaalisesta kolumnista Blue Gene -superkoneella.
Yksittäisen hermosolun biophysikaalisten ominaisuuksien mallintaminen voi tarjota mekanismeja, jotka toimivat rakennuspalikoina verkon dynamiikalle.[23] Kuitenkin yksityiskohtaiset hermosolujen kuvaukset ovat laskennallisesti kalliita, ja tämä laskentakustannus voi rajoittaa realististen verkkomallinnusten tutkimusta, jossa täytyy simuloida monia hermosoluja. Tämän seurauksena tutkijat, jotka tutkivat suuria hermoverkkoja, yleensä käyttävät yksinkertaistettua mallia jokaiselle hermosolulle ja synapsille, jättäen suuren osan biologisista yksityiskohdista huomiotta. Siksi on tarve tuottaa yksinkertaistettuja hermosolumalleja, jotka voivat säilyttää merkittävän biologisen tarkkuuden alhaisella laskennallisella kuormituksella. Algoritmeja on kehitetty tuottamaan tarkkoja, nopeammin toimivia, yksinkertaistettuja hermosolumalleja laskennallisesti kalliista, yksityiskohtaisista hermosolumalleista.[24]
Gliasolut osallistuvat merkittävästi hermosolujen toiminnan säätelyyn sekä solutasolla että verkostotasolla. Tämän vuorovaikutuksen mallintaminen selventää kaliumkiertoa,[25][26] joka on tärkeä homeostaasin ylläpitämiseksi ja epileptisten kohtausten estämiseksi. Mallintaminen paljastaa gliasolujen ulokkeiden roolin, jotka voivat joissakin tapauksissa tunkeutua synaptiseen rakoon häiritäkseen synaptista siirtoa ja siten hallita synaptista viestintää.[27]
Laskennallinen neurotiede pyrkii vastaamaan laajaan joukkoon kysymyksiä, mukaan lukien: Kuinka aksonit ja dendriitit muodostuvat kehityksen aikana? Kuinka aksonit tietävät, mihin kohdistaa ja kuinka saavuttaa nämä kohteet? Kuinka hermosolut siirtyvät oikeaan paikkaan keskushermostossa ja ääreishermostossa? Kuinka synapsit muodostuvat? Tiedämme molekyylibiologiasta, että hermoston eri osat vapauttavat erilaisia kemiallisia signaaleja, kasvutekijöistä hormoneihin, jotka moduloivat ja vaikuttavat toiminnallisten yhteyksien kasvuun ja kehitykseen hermosolujen välillä.
Synaptisten yhteyksien ja morfologian muodostumisen ja kuvioinnin teoreettiset tutkimukset ovat edelleen alkuvaiheessa. Yksi hypoteesi, joka on äskettäin saanut huomiota, on minimaalisen johdotuksen hypoteesi, joka postuloituu, että aksonien ja dendriittien muodostuminen minimoi resurssien allokoinnin säilyttäen samalla maksimaalisen tiedon tallennuksen.[28]
Varhaiset mallit sensorisesta prosessoinnista teoreettisessa viitekehyksessä on hyvitetty Horace Barlow'lle. Jossain määrin samanlainen kuin edellisessä osassa kuvattu minimaalisen johdotuksen hypoteesi, Barlow ymmärsi varhaisten sensoristen järjestelmien prosessoinnin olevan eräänlaista tehokasta koodausta, jossa hermosolut koodaavat tietoa minimoiden piikkien määrän. Kokeellinen ja laskennallinen työ ovat sittemmin tukeneet tätä hypoteesia jossain muodossa. Esimerkiksi visuaalisen prosessoinnin kohdalla tehokas koodaus ilmenee tehokkaan spatiaalisen koodauksen, värikoodauksen, ajallisen/liikekoodauksen, stereokoodauksen ja niiden yhdistelmien muodossa.[29]
Pidemmälle visuaalisessa reitissä, jopa tehokkaasti koodattu visuaalinen tieto on liikaa informaatiokapeikolle, visuaaliselle tarkkaavaisuuskapeikolle.[30] Seuraava teoria, V1 Saliency Hypothesis (V1SH), on kehitetty eksogeenisen tarkkaavaisuuden valinnalle osalle visuaalista syötettä jatkokäsittelyä varten, ohjattuna alhaalta ylöspäin suuntautuvalla tärkeysjärjestyskartalla primaarissa visuaalisessa aivokuoressa.[31]
Nykyinen tutkimus sensorisessa prosessoinnissa jakautuu erilaisten osajärjestelmien biofysikaaliseen mallintamiseen ja teoreettisempaan havainnon mallintamiseen. Nykyiset havainnon mallit ovat ehdottaneet, että aivot suorittavat jonkinlaista Bayesilaista päättelyä ja erilaisten sensoristen tietojen integrointia luodakseen käsityksemme fyysisestä maailmasta.[32][33]
Tämän artikkelin viitteitä on tuotu vieraskielisestä lähteestä ja siihen ei ole vaihdettu suomenkielisen wikipedian käyttämää viitemallinetta. Voit auttaa Wikipediaa vaihtamalla artikkelissa olevan {{Citation}} viitemallineen suomenkielisen wikipedian vastaavaan mallineeseen viitemallineiden luettelosta. Tarkennus: Organismically-inspired robotics: homeostatic adaptation and teleology beyond the closed sensorimotor loop |