Sarjaan kytketty RLC-piiri on esimerkki yksinkertaisesta RLC-piiristä. Kuvassa sarjaankytkettyinä ovat vasemmalla vastus, keskellä pyöreä toroidikäämi ja oikealla kondensaattori.
Näin ollen kondensaattori ja kela vastustavat vaihtovirran kulkua eri tavoilla eri kulmataajuuksilla: pienillä kulmataajuuksilla (jännite ja virta muuttuvat hitaasti) kondensaattori vastustaa virran kulkua paljon ja vastaavasti suurilla kulmataajuuksilla (jännite ja virta muuttuvat nopeasti) kela vastustaa virran kulkua paljon. Vastuksen resistanssi ei juurikaan[Huom. 1] riipu kulmataajuudesta, joten resistanssin vaikutus sähkövirran suuruuteen on taajuuden suhteen vakio. Piiristä riippuvalla tietyllä kulmataajuudella piirin impedanssi siis saavuttaa maksimi- tai minimiarvonsa. Tätä kulmataajuutta vastaavaa taajuutta
sanotaan ko. piirin resonanssitaajuudeksi.[12][13][14][15] Sekä sarjaan- että rinnankytkettyjen RLC-piirien resonanssikulmataajuus on
Kaistanleveys kertoo niiden taajuuksien erotuksen, joiden välissä sarjaresonanssipiirin keskimääräinen teho on vähintään puolet resonanssitaajuudella saavutettavasta maksimitehosta. Tehon puolittuminen vastaa sähkövirran huippuarvon pienentymistä tekijällä .
Piirissä kuluva pätöteho riippuu sähkövirran suuruudesta, joka puolestaan riippuu sähkövirran taajuudesta. Piirin keskimääräinen pätöteho on
Sarjaresonanssipiirissä pätöteho on maksimissaan, kun piiri värähtelee resonanssissa. Resonanssitaajuudella , jolloin piirin pätöteho saavuttaa maksimiarvonsa. Tietyllä resonanssitaajuutta pienemmällä ja suuremmalla taajuudella piirin teho puolittuu resonanssitilanteesta. Ts. on olemassa kulmataajuusalue siten, että
,
kun . Desibeliasteikolla tehon puolittuminen tarkoittaa sitä, että tehon muutos on −3 dB.[18] Rajakulmataajuuksien erotusta sanotaan piirin kaistanleveydeksi:
RLC-piirin hyvyysluku kertoo piiriin varastoituneen energian ja yhden jakson aikana hyödyntämättömään muotoon (mm. lämmöksi) muuttuvan energian suhteesta.[17][19] Hyvyysluku on piirin induktiivisen reaktanssin ja resistanssin suhde resonanssissa:
Hyvyysluku kertoo piirin käyttäytymisestä resonanssitaajuuden ympäristössä: mitä suurempi hyvyysluku on, sen kapeampi piirin taajuuskaista on. Kaistanleveyttä voidaan siis pienentää kasvattamalla piirin resistanssia.[17][20] Pienillä taajuuksilla tämä on kuitenkin käytännössä mahdotonta, sillä rautasydämisenkin käämin induktanssi−resistanssi-suhde on luokkaa 0,05 |henryä per ohmi. Näin ollen käytännössä
Vaihtojännitelähteen kanssa sarjaan kytketty RLC-piiri
RLC-piiri voidaan toteuttaa esimerkiksi siten, että vastus, käämi ja kondensaattori on kytketty peräkkäin sarjaan. Tällöin Kirchhoffin virtalain mukaisesti kaikkien komponenttien läpi kulkee sama sähkövirta. Piirin aikariippuvuutta kuvaa tällöin differentiaaliyhtälö
Tästä differentiaaliyhtälöstä voidaan ratkaista piirin hetkellinen sähkövirta ajan funktiona:
,
missä on jännitteen huippuarvo ja
Sarjaan kytketyn RLC-piirin resistanssi , kapasitiivinen reaktanssi , induktiivinen reaktanssi ja impedanssi jännitelähteen kulmataajuuden funktiona. Resonanssitaajuudella piirin impedanssi on pienimmillään.
Kun sähkövirran taajuus on sama kuin piirin resonanssitaajuus,
,
kutsutaan piiriä sarjaresonanssiksi.[15][16][21] Resonanssissa käämin ja kondensaattorin jännitteet ovat yhtä suuret, mutta ne ovat vastakkaisissa vaiheissa, joten ne kumoavat toisensa. Näin ollen sarjaresonanssipiirin impedanssi koostuu puhtaasti resistanssista () ja sähkövirta saavuttaa maksimiarvonsa:
Toinen verrattain yksinkertainen RLC-piiri on piiri, jossa vastus, käämi ja kondensaattori on kytketty vierekkäin eli rinnan (ks. kuva Kytkentä A)[15][23] tai jossa pelkästään käämi ja kondensaattori ovat rinnan ja vastus näiden kanssa sarjassa (ks. kuva Kytkentä B)[13]. Resonanssitaajuudella näitä kumpaakin piiriä kutsutaan rinnakkaisresonanssiksi.[13][15][23]
Kytkentä A: Vaihtojännitelähteen kanssa rinnan kytketyt vastus, käämi ja kondensaattori
Kytkentää, jossa vastus, käämi ja kondensaattori ovat kaikki rinnan jännitelähteen kanssa, kutsutaan myös GLC-piiriksi,[24] missä G tarkoittaa vastuksen konduktanssia
Kytkennän A resistanssi, kapasitiivinen reaktanssi, induktiivinen reaktanssi ja impedanssi jännitelähteen kulmataajuuden funktiona. Resonanssikulmataajuudella piirin impedanssi on suurimmillaan.
.
Rinnan kytketyn RLC-piirin impedanssille pätee
,
mutta sarjakytkennälle analogisten yhtälöiden saavuttamiseksi voidaan käyttää admittanssia ja konduktanssia:
Kun sähkövirran kulmataajuus on sama kuin piirin resonanssikulmataajuus
,
ovat käämin ja kondensaattorin läpi kulkevat sähkövirrat yhtä suuret, mutta vastakkaisissa vaiheissa. Tällöin rinnakkaisresonanssipiirin impedanssi koostuu puhtaasti resistanssista () ja sähkövirta saavuttaa minimiarvonsa:
Kytkentä B: Vaihtojännitelähteen kanssa sarjaan kytketty vastus ja näiden kanssa rinnan kytketyt käämi ja kondensaattori
Kytkentä, jossa käämi ja kondensaattori ovat rinnan ja vastus näiden kanssa sarjassa jännitelähteen kanssa, on myös värähtelypiiri, jolla havaitaan resonanssi-ilmiö.[13] Tämän kytkennän impedanssi on
Kaistanpäästösuodatin tai -suodin on elektroninen suodatin, jonka tehtävänä on päästää lävitseen tietyn taajuusalueen sähköiset signaalit ja heikentää tämän taajuusalueen ulkopuolisia signaaleja. Tämä voidaan toteuttaa esimerkiksi sarjaresonanssipiirillä, jonka komponentit valitaan siten, että piirin resonanssitaajuus on sama kuin haluttu suodatetun signaalin taajuus.[24] Kun vaihtojännitteen taajuus sisääntulossa (in) on lähellä piirin resonanssitaajuutta, on piirin impedanssi pienimmillään. Muun taajuuden signaalit suodattuvat sitä tehokkaammin, mitä kauempana ne ovat resonanssitaajuudesta. Kaistanleveys on valittava siten, että päästettävä signaali mahtuu suodattimen taajuuskaistaan.
Kaistanestosuodatin tai -suodin on elektroninen suodatin, jonka tehtävänä on estää tietyn taajuusalueen sähköiset signaalit ja vahvistaa tämän taajuusalueen ulkopuolisia signaaleja. Tämä voidaan toteuttaa esimerkiksi rinnakkaisresonanssipiirillä, jonka komponentit valitaan siten, että piirin resonanssitaajuus on sama kuin haluttu estettävän signaalin taajuus.[24] Kun vaihtojännitteen taajuus sisääntulossa (in) on lähellä piirin resonanssitaajuutta, on piirin impedanssi suurimmillaan. Muun taajuiset signaalit pääsevät läpi sitä tehokkaammin, mitä kauempana ne ovat resonanssitaajuudesta. Kaistanleveys on valittava siten, että estettävä signaali mahtuu suodattimen taajuuskaistaan.
↑Brophy, James J.: ”AC-Circuit Analysis”, Basic Electronics for Scientists. (5. painos) Singapore: McGraw-Hill, 1990. ISBN 0-07-100675-3(englanniksi)
↑Grant, I. S. & Phillips, W. R.: ”Alternating currents and transients”, Electromagnetism. (2. painos) John Wiley & Sons, Ltd, 1990. ISBN 978-0-471-92712-9(englanniksi)
↑Knight, Randall D.: ”AC Circuits”, Physics for Scientists and Engineers, A Strategic Approach with Modern Physics. (3. painos) Pearson, 2014. ISBN 978-1-292-02078-5(englanniksi)
↑Suurilla taajuuksilla johtimissa havaitaan nk. virranahtoilmiö, joka aiheuttaa resistanssin kasvun varauksenkuljettajien ahtautuessa johtimen pinnoille. [Grant & Phillips, s. 390]