Naissance | |
---|---|
Nationalité | |
Formation |
Université d'État de Pennsylvanie (baccalauréat universitaire ès sciences) (jusqu'en ) Université de Princeton (doctorat) (jusqu'en ) |
Activités |
Mathématicien, professeur de mathématiques |
A travaillé pour |
Université Northwestern (depuis ) |
---|---|
Membre de | |
Directeur de thèse | |
Distinctions |
Aaron C. Naber, né le , est un mathématicien américain spécialiste de physique mathématique.
Aaron Naber fait des études de mathématiques à l’université d'État de Pennsylvanie avec un Bachelor en 2005 et obtient en 2009 à l’université de Princeton un Ph. D. sous la direction de Gang Tian (titre de la thèse : Ricci solitons and collapsed spaces)[1]. De 2009 à 2012 il est C.L.E. Moore Instructor au Massachusetts Institute of Technology, où il devient en 2012 professeur assistant. En 2013 il devient professeur associé et en 2015 Kenneth F. Burgess Professor de mathématiques à l'université Northwestern.
Aaron Naber travaille en analyse géométrique et géométrie différentielle avec applications en physique (théorie de Yang-Mills, sur les variétés d'Einstein), et notamment participe au développement de variétés riemanniennes dans le cadre du programme de Hamilton et de la courbure moyenne (mean curvature flow) et sur les problèmes de régularités qui s'y rapportent. Un problème majeur dans la démonstration de la conjecture de Poincaré par Grigori Perelman étaient posé par les singularité du flot de Ricci. Dans sa thèse, Naber étend le cas étudié par Perelman de la dimension 3 aux dimensions 4 et plus (dans le cas de courbure non négative bornée) et étudie des solutions en solitons rétrécissants[2]. Avec Gang Tian il étudie la structure géométrique de variétés riemanniennes à courbure sectionnelle régulière bornée et montre notamment qu'en dimension au plus 4 on obtient une structure d'orbifold lisse en dehors d'un nombre fini de points.
Pour le flot de Ricci, il réussit en 2015, avec Robert Haslhofer, à trouver, en intégrant dans l'étude la structure analytique stochastique de dimension infinie, une définition des solutions faibles également pour le cas non continu.
En 2014 il est boursier Sloan, la même année conférencier invité au congrès international des mathématiciens à Séoul (The structure and meaning of Ricci curvature). En 2018 il est lauréat du New Horizon in Mathematics Prize.