Soit A un anneau intègre à PGCD.
Soit un polynôme unitaire (c'est-à-dire que ) à coefficients dans A et x un élément du corps des fractions de A. Cet élément x peut s'écrire p/q, où p et q sont des éléments de A premiers entre eux.
Si x est une racine de P alors
puis en multipliant par
Puisque, pour tout i < n, q divise , on en déduit que q divise aussi . Or q et p sont premiers entre eux ; d'après le lemme de Gauss, q doit alors diviser 1, autrement dit q est inversible dans A, donc l'élément x = p/q appartient à A.