Le codage de Golomb est un codage entropique inventé par Solomon Wolf Golomb en 1966 et utilisé essentiellement en compression de données.
Le code produit est un code préfixe.
Le codage de Golomb d'un entier naturel dépend d'un paramètre et se fait en deux étapes :
Mathématiquement, pour coder un entier , on code d'abord en unaire, puis en binaire tronqué.
Le codage de Golomb est adapté pour des données dans lesquelles les valeurs les plus faibles sont plus probables que les autres (mais où les autres peuvent malgré tout apparaitre).
Décimal | Binaire | Code de Golomb k = 1 (unaire) |
Code de Golomb k = 2 |
Code de Golomb k = 4 |
Code de Golomb k = 16 |
---|---|---|---|---|---|
0 | 0000 | 0 | 0 0 | 0 00 | 0 0000 |
1 | 0001 | 10 | 0 1 | 0 01 | 0 0001 |
2 | 0010 | 110 | 10 0 | 0 10 | 0 0010 |
3 | 0011 | 1110 | 10 1 | 0 11 | 0 0011 |
4 | 0100 | 11110 | 110 0 | 10 00 | 0 0100 |
5 | 0101 | 111110 | 110 1 | 10 01 | 0 0101 |
6 | 0110 | 1111110 | 1110 0 | 10 10 | 0 0110 |
7 | 0111 | 11111110 | 1110 1 | 10 11 | 0 0111 |
8 | 1000 | 111111110 | 11110 0 | 110 00 | 0 1000 |
9 | 1001 | 1111111110 | 11110 1 | 110 01 | 0 1001 |
10 | 1010 | 11111111110 | 111110 0 | 110 10 | 0 1010 |
Le codage de Golomb est principalement utilisé dans sa variante dite codage de Rice qui peut être implémentée de façon plus efficace. Un codage de Rice est d'ailleurs équivalent à un codage de Golomb dont le paramètre est 2 élevé à la puissance du paramètre de Rice.