Dodécadodécaèdre adouci inversé

Dodécadodécaèdre adouci inversé
Description de l'image Inverted snub dodecadodecahedron.png.

Faces Arêtes Sommets
84 (60{3}+12{5}+12{5/2}) 150 60
Type Polyèdre uniforme
Références d'indexation U60 – C76 – W114
Symbole de Wythoff | 53 2 5
Caractéristique -6
Groupe de symétrie I
Dual Hexacontaèdre pentagonal médial inversé

En géométrie, le dodécadodécaèdre adouci inversé est un polyèdre uniforme non convexe, indexé sous le nom U60.

Coordonnées cartésiennes

[modifier | modifier le code]

Les coordonnées cartésiennes des sommets d'un dodécadodécaèdre adouci inversé centré à l'origine sont les permutations paires de

(±2α, ±2, ±2β),
(±(α+β/τ+τ), ±(-ατ+β+1/τ), ±(α/τ+βτ-1)),
(±(-α/τ+βτ+1), ±(-α+β/τ-τ), ±(ατ+β-1/τ)),
(±(-α/τ+βτ-1), ±(α-β/τ-τ), ±(ατ+β+1/τ)) et
(±(α+β/τ-τ), ±(ατ-β+1/τ), ±(α/τ+βτ+1)),

avec un nombre pair de signes plus, où

β = (α2/τ+τ)/(ατ−1/τ),

où τ = (1+√5)/2 est le nombre d'or (quelquefois écrit φ) et α est la solution réelle négative de τα4−α³+2α²−α−1/τ, ou approximativement −0,3352090. En prenant les permutations impaires des coordonnées ci-dessus avec un nombre impair de signes plus, cela donne une autre forme, l'énantiomorphe de ce polyèdre.

Lien externe

[modifier | modifier le code]

Robert Ferréol, « DODÉCADODÉCAÈDRE ADOUCI INVERSÉ », sur Encyclopédie des formes mathématiques remarquables