Certains invariants formés à partir de ces tenseurs de courbure jouent un rôle important dans la classification des espaces-temps. Les invariants sont en réalité moins puissants pour distinguer localement les variétés lorentziennes non-isométriques que pour distinguer les variétés riemanniennes. Cela signifie qu'ils sont plus limités dans leurs applications que pour les variétés dotées d'un tenseur métrique positif défini.
Ce sont des invariants polynomiaux quadratiques (somme des carrés des composants). Quelques auteurs définissent le scalaire de Chern-Pontryagin en utilisant le duale droit plutôt que le duale gauche.
Le premier d'entre eux a été introduit par Eric Kretschmann. Les deux autres noms sont quelque peu anachroniques, mais depuis que les intégrales des deux derniers sont liées au nombre d'instanton pour l'un et au caractéristique d'Euler pour l'autre, on peut les comprendre.
Il existe une relation entre la décomposition de Ricci et les invariants de courbures. Si on applique cette décomposition au tenseur de Riemann pour donner un tenseur de Weyl ainsi qu'une somme de tenseurs du quatrième rang, qui sont par ailleurs construits à partir du tenseur du second rang de Ricci et du scalaire de Ricci., on observe que ces deux ensembles d'invariants sont liés (en dimension 4).
En quatre dimensions, la décomposition de Bel du tenseur de Riemann par rapport à un champ vectoriel de temps , pas nécessairement en géodésique ou en hypersurface orthogonal, se compose de trois parties :
Le tenseur de la gravité électronique
Le tenseur de la gravité magnétique
Le tenseur de la gravité topologique
À cause du fait qu'ils soient tous transversaux, ils peuvent être représentés comme des opérateurs linéaires de vecteurs en trois dimensions, ou comme des matrices réelles 3x3. Ils sont respectivement symétriques, sans trace, et symétriques (6,8,6 composants linéaires indépendants, pour un total de 20). Si nous nommons ces opérateurs respectivement E,B, et L, les principaux invariants de Riemann sont obtenus comme suit :
En termes de scalaires de Weyl dans le formalisme de Newman-Penrose, les principaux invariants du tenseur de Weyl peuvent être obtenus en prenant les parties réelles et imaginaires de l'expression
Le principal invariant quadratique du tenseur de Ricci, , peut être obtenu avec une expression plus compliquée impliquant les scalaires de Ricci.