En mathématiques, l'inégalité de Weitzenböck, démontrée en 1919 par le mathématicien australien Roland Weitzenböck[1], stipule que dans un triangle de côtés de longueurs , , et d'aire , on a l'inégalité :
La réécriture suivante de l’inégalité ci-dessus en donne une interprétation géométrique permettant d'en fournir une preuve immédiate[2] :
Ici, le membre de gauche est la somme des aires des triangles équilatéraux construits sur les côtés du triangle d'origine. L'inégalité indique donc que la somme des aires des triangles équilatéraux est toujours supérieure ou égale à trois fois l'aire du triangle d'origine.
Ceci peut être démontré en répliquant trois fois l'aire du triangle dans les triangles équilatéraux. Pour y parvenir, on utilise le point de Fermat pour diviser le triangle en trois sous-triangles obtus ayant un angle de 120°, puis chacun de ces sous-triangles est répliqué trois fois dans le triangle équilatéral qui lui fait face. Cela ne fonctionne que si chaque angle du triangle est strictement inférieur à 120°, car sinon le point de Fermat n'est pas situé à l'intérieur du triangle et devient un sommet. Cependant si un angle est supérieur ou égal à 120°, il est possible de reproduire le triangle entier trois fois dans le plus grand triangle équilatéral, de sorte que la somme des aires de tous les triangles équilatéraux reste de toute façon supérieure au triple de l'aire du triangle.
Ayant utilisé l’inégalité arithmético-géométrique , avec , l’égalité se produit si et seulement si , soit si et seulement si le triangle est équilatéral.
↑(de) Roland Weitzenböck, « Über eine Ungleichung in der Dreiecksgeometrie », Mathematische Zeitschrift, vol. 5, , p. 137-146 (lire en ligne)
↑Claudi Alsina et Roger B. Nelsen, « Geometric Proofs of the Weitzenböck and Hadwiger-Finsler Inequalities », Mathematics Magazine, vol. 81, no 3, , p. 216–219 (ISSN0025-570X, lire en ligne, consulté le )
↑Coxeter, H.S.M., and Greitzer, Samuel L. , Geometry Revisited, page 64.
Claudi Alsina, Roger B. Nelsen : When Less is More: Visualizing Basic Inequalities. MAA, 2009, (ISBN9780883853429), p. 84-86
Claudi Alsina, Roger B. Nelsen : Geometric Proofs of the Weitzenböck and Hadwiger–Finsler Inequalities. Magazine Mathématiques, Vol. 81, n° 3 (juin 2008), p. 216-219 (JSTOR)
DM Batinetu-Giurgiu, Nevulai Stanciu : The inequality Ionescu - Weitzenböck. MateInfo.ro, avril 2013, (copie en ligne)
Daniel Pedoe : On Some Geometrical Inequalities. The Mathematical Gazette, Vol. 26, n° 272 (décembre 1942), pp. 202-208 (JSTOR)
Dragutin Svrtan, Darko Veljan : Non-Euclidean Versions of Some Classical Triangle Inequalities. Forum Geographicorum, Volume 12, 2012, pp. 197-209 (copie en ligne)
Mihaly Bencze, Nicusor Minculete, Ovidiu T. Pop : New inequalities for the triangle. Octogon Mathematical Magazine, Vol. 17, n ° 1, avril 2009, pp. 70-89 (copie en ligne)