La méthode Condorcet avec rangement des paires par ordre décroissant est un système de vote qui permet de résoudre certains conflits de la méthode Condorcet. La méthode initialement proposée par Condorcet est développée par Nicolaus Tideman[1].
Chaque électeur range les candidats par ordre de préférence. Comme dans toute méthode Condorcet, toutes les confrontations par paires sont organisées. On établit alors un graphe orienté pondéré :
Puis on parcourt le graphe, par ordre décroissant du poids attribué, en recherchant systématiquement les cycles, et en "confirmant" les arcs qui n'en créent pas (à l'inverse, on élimine les arcs qui créent un cycle avec les arcs déjà confirmés). Au terme des opérations on obtient un graphe sans cycles. Le gagnant est le sommet vers lequel n'arrive aucune flèche (c'est-à-dire : qui gagne tous les duels "confirmés").
Pour cela, il aura fallu parcourir, au maximum et pour N candidats, N(N-1)/2 arcs.
45 votants; 5 candidats:
Ordre | ACBED | ADECB | BEDAC | CABED | CAEBD | CBADE | DCEBA | EBADC |
---|---|---|---|---|---|---|---|---|
Votants préférant cet ordre | 5 | 5 | 8 | 3 | 7 | 2 | 7 | 8 |
On effectue les confrontations par paires (méthode Condorcet)
d[*,A] | d[*,B] | d[*,C] | d[*,D] | d[*,E] | |
---|---|---|---|---|---|
d[A,*] | 20 | 26 | 30 | 22 | |
d[B,*] | 25 | 16 | 33 | 18 | |
d[C,*] | 19 | 29 | 17 | 24 | |
d[D,*] | 15 | 12 | 28 | 14 | |
d[E,*] | 23 | 27 | 21 | 31 |
On donne leur poids et leur orientations aux arcs (A bat B 20 fois, alors que B bat A 25 fois : cela donne un arc orienté de B vers A et de poids 25-20=5)
d[*,A] | d[*,B] | d[*,C] | d[*,D] | d[*,E] | |
---|---|---|---|---|---|
d[A,*] | 7 | 15 | |||
d[B,*] | 5 | 21 | |||
d[C,*] | 13 | 3 | |||
d[D,*] | 11 | ||||
d[E,*] | 1 | 9 | 17 |
On constitue le graphe orienté des duels en classant les 10 arcs restants par ordre d'examen, du premier ( BD, dont le poids est 21) au dernier ( EA, dont le poids est 1) : (BD), (ED), (AD), (CB), (DC), (EB), (AC), (BA), (CE), (EA)
Les arcs (BD), (ED), (AD) , (CB) sont confirmés car ils ne construisent pas de cycle, mais l'arc (DC) doit être supprimé car il créerait le cycle (BDCB)
Puis les arcs (EB) et (AC) sont confirmés (en bleu) mais l'arc (BA) doit être supprimé (mis en rouge) car il créerait le cycle (ACBA)
Enfin l'arc (CE) est conservé et l'arc (EA) est supprimé.
Le graphe orienté donne alors pour gagnant le candidat A, la méthode Schulze et la méthode Black auraient donné le candidat E.