Un module multipuce (en anglais : Multi-chip module ou MCM) est un assemblage électronique (tel qu’un boîtier équipé d'un certain nombre de bornes conductrices ou « broches ») dans lequel plusieurs circuits intégrés (CI ou « puces »), puces de semi-conducteur et/ou d’autres composants discrets sont intégrés, généralement sur un substrat unificateur, de sorte qu’à l’usage, il peut être traité comme s’il s’agissait d’un seul circuit intégré plus grand[1]. D’autres termes pour désigner un boîtier MCM incluent « intégration hétérogène » ou « circuit intégré hybride (en) »[2]. L’avantage de l’utilisation du boîtier MCM est qu’il permet à un fabricant d’utiliser plusieurs composants pour la modularité et/ou pour améliorer les rendements de fabrication par rapport à une approche conventionnelle de circuits intégrés monolithiques.
Un module multipuce Flip Chip (Flip Chip Multi-Chip Module, FCMCM) est un module multipuce qui utilise la technologie Flip Chip. Un FCMCM peut comporter une grande puce et plusieurs puces plus petites, le tout sur le même module[3].
Les modules multi-puces se présentent sous différentes formes en fonction de la complexité et des philosophies de développement de leurs concepteurs. Celles-ci peuvent aller de l’utilisation de circuits intégrés regroupés sur un petit circuit imprimé (PCB) destiné à imiter l’empreinte d’un boîtier existant à des boîtiers entièrement personnalisés intégrant de nombreuses puces sur un substrat d’interconnexion haute densité (HDI).
Le substrat du MCM assemblé final peut être réalisé de l’une des manières suivantes :
Les circuits intégrés qui composent le boîtier MCM peuvent être :
Un interposeur (en) relie les circuits intégrés. Celui-ci est souvent organique (un circuit imprimé qui contient du carbone, et est donc organique) ou est fait de silicium (comme dans les High Bandwidth Memory)[6]. Chacune de ces solutions a des avantages et des limites. L’utilisation d’interposeurs pour connecter plusieurs circuits intégrés au lieu de connecter plusieurs circuits intégrés monolithiques dans des boîtiers séparés réduit la puissance nécessaire pour transmettre des signaux entre les circuits intégrés, augmente le nombre de canaux de transmission et réduit les retards causés par la résistance et la capacité (retards RC)[7]. Cependant, la communication entre les chiplets consomme plus d’énergie et a une latence plus élevée que les composants des circuits intégrés monolithiques[8].
Un développement relativement nouveau dans la technologie MCM est le boîtier dit « pile de puces »[9]. Certains circuits intégrés, en particulier les mémoires, ont des brochages très similaires ou identiques lorsqu’ils sont utilisés plusieurs fois dans les systèmes. Un substrat soigneusement conçu peut permettre à ces puces d’être empilées dans une configuration verticale, ce qui réduit considérablement l’empreinte du MCM résultant (bien qu’au prix d’une puce plus épaisse ou plus haute). Étant donné que la surface est plus souvent limitée dans les conceptions électroniques miniatures, la pile de puces est une option attrayante dans de nombreuses applications telles que les téléphones portables et les assistants numériques personnels (PDA). Grâce à l’utilisation d’un circuit intégré 3D (en) et d’un procédé d’amincissement, jusqu’à dix puces peuvent être empilées pour créer une carte mémoire SD de grande capacité[10]. Cette technique peut également être utilisée pour la High Bandwidth Memory (mémoire à bande passante élevée).
Un moyen possible d’augmenter les performances du transfert de données dans la pile de puces est d’utiliser des réseaux sans fil sur puce (WiNoC)[11].