En mathématiques, et plus particulièrement en combinatoire, les nombres de Motzkin forment une suite d'entiers naturels utilisée dans divers problèmes de dénombrement. Ils sont nommés ainsi d'après le mathématicien Théodore Motzkin (1908-1970). Les nombres de Motzkin ont de nombreuses applications en géométrie, combinatoire et théorie des nombres.
Le nombre de Motzkin d'indice est le nombre de façons de choisir des cordes ne se coupant pas, parmi les cordes reliant points disposés sur un cercle. Les nombres de Motzkin satisfont la relation de récurrence suivante :
Les nombres de Motzkin correspondent à la suite A001006 de l'OEIS et les premiers de ces nombres sont:
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |
1 | 1 | 2 | 4 | 9 | 21 | 51 | 127 | 323 | 835 | 2188 | 5798 |
Commençons par démontrer la relation de récurrence énoncée dans l'introduction. Parmi n+1 points disposés sur un cercle, choisissons-en un, soit P. Le nombre de façons de choisir des cordes ne se coupant pas et joignant des points choisis parmi les n+1 points en question et tous distincts de P est égal à . D'autre part, si pour j dans {1, 2, ..., n}, désigne le j-ième point après P dans un sens fixé de parcours du cercle, le nombre de façons de choisir des cordes possédant les propriétés voulues et telles qu'une de ces cordes soit la corde est le nombre de façons de choisir d'une part un ensemble de cordes convenable relativement aux points et d'autre part un ensemble de cordes convenable relativement aux points . Ces deux choix sont indépendants l'un de l'autre, le nombre de façons de faire le premier est le nombre de façons de faire le second est , donc le nombre de façons de faire les deux choix est , d'où
Jointe à cette relation détermine les nombres de Motzkin. Soit
la série génératrice des nombres de Motzkin. La relation de récurrence exprime que cette série satisfait l'équation[1] suivante :
De cette équation, on déduit
et en développant , on obtient la formule explicite
où est le nombre de Catalan
L'étude de la série génératrice permet d'obtenir l'expression suivante pour le comportement asymptotique[2] :
La série génératrice vérifie
Il y a d'autres expressions explicites des nombres de Motzkin que celle qui a été déduite plus haut d'une équation satisfaite par la série génératrice.
On a par exemple[3]
D'autre part, en appliquant le théorème d'inversion de Lagrange à la série génératrice, on obtient[4] l'expression
Les nombres de Motzkin vérifient aussi la relation de récurrence linéaire à coefficients polynomiaux suivante :
Il n'est pas évident a priori que les nombres définis par cette relation soient entiers[5],[6].
Le nombre de Motzkin est aussi le nombre d'arbres unaires-binaires (c'est-à-dire d'arbres planaires enracinés où chaque nœud a un ou deux enfants) à arcs. On peut voir cela directement, par interprétation de la relation de récurrence, ou aussi en établissant une bijection entre les cercles à cordes et ces arbres. Choisissons à nouveau un point sur un cercle. S'il n'est pas lié par une corde, on lui fait correspondre la racine d'un arbre avec un seul fils qui correspond au cercle fusionné. Sinon, la corde découpe le cercle en deux parties, correspondant aux sous-arbres gauche et droit d'un arbre dont la racine a deux fils.
Le nombre de Motzkin est également le nombre de chemins reliant le point au point , constitué de pas Nord-Est ou Sud-Est ou Est , le chemin devant se trouver entièrement dans le quadrant supérieur droit d'un repère. Un tel chemin est un chemin de Motzkin. La correspondance entre arbres unaires-binaires et chemins de Motzkin s'obtient en effectuant un parcours préfixe sur l'arbre, et en notant par un pas montant (resp. descendant) la visite d'un enfant gauche (resp. droit) quand il y en a deux, et par un pas horizontal la visite d'un enfant unique.
Le nombre de Motzkin est également aussi le nombre de suites d'entiers naturels de longueur vérifiant les deux conditions suivantes : le premier et le dernier éléments valent 0 ou 1; la différence entre deux éléments consécutifs est -1, 0 ou 1. Cette équivalence s'obtient en considérant les ordonnées des points d'un chemin de Motzkin, sauf les deux points extrêmes, et en notant la différence des ordonnées de deux points consécutifs.
Le nombre de Motzkin est égal au nombre de mots de Motzkin de longueur , c'est-à-dire de mots de longueur du langage appelé langage de Motzkin. Ce langage est une extension du langage de Dyck sur une paire de parenthèses, obtenu par mélange des mots de Dyck avec des mots sur une nouvelle lettre. Plus précisément, soit un alphabet à trois lettres. Le langage de Motzkin est l'ensemble de mots défini par l'équation
ou, de manière équivalent, engendré par la grammaire algébrique
Les premiers mots du langage rangés par longueur :
0 | 1 | |
1 | 1 | |
2 | 2 | |
3 | 4 | |
4 | 9 |
La correspondance entre mots de Motzkin et chemin de Motzkin s'obtient en notant un pas montant par la lettre , un pas descendant par la lettre , et un pas horizontal par la lettre .
Les quatre seuls nombres de Motzkin premiers connus sont, d'après la suite A092832 de l'OEIS : 2, 127, 15 511 et 953 467 954 114 363.
Donaghey et Shapiro (1977) illustrent l'étroite parenté entre les nombres de Motzkin et les nombres de Catalan par quatorze applications différentes des nombres de Motzkin en mathématiques. Depuis, de nombreuses occurrences des nombres de Motzkin ont été trouvés en combinatoire, en informatique théorique et en mathématiques : MathSciNet recense plus de 100 articles ayant le mot Motzkin dans le titre.