La théorie permettant d'analyser ces problèmes ne requiert pas la différentiabilité des fonctions. Cette généralité est motivée par le fait que certaines méthodes de construction de problèmes d'optimisation convexe conduisent à des problèmes non différentiables (fonction marginale, dualisation de contraintes, etc). Si cette généralité est un atout, permettant de prendre en compte davantage de problèmes, l'abord de la théorie est également plus difficile.
Soit un espace vectoriel. Un problème d'optimisation convexe[1] consiste à minimiser une fonction convexe sur , ce que l'on écrit d'une des manières suivantes :
Si on note
le domaine (effectif) de , le problème est identique à celui de minimiser sur :
Si , c'est-à-dire si , cette expression est encore valable puisque, par convention, . L'intérêt d'avoir une fonction pouvant prendre la valeur est donc d'introduire des contraintes dans le problème de minimisation (on oblige la solution du problème à être dans ).
Au lieu de donner la valeur infinie au critère en dehors de l'ensemble admissible, on peut spécifier explicitement les contraintes à réaliser. Le problème s'écrit par exemple comme suit
dans lequel on minimise une fonction à valeurs finies et l'inconnue doit
vérifier une contrainte affine ( est une application linéaire entre et un autre espace vectoriel et ) et
vérifier un nombre fini de contraintes fonctionnelles convexes données par une fonction dont les composantes sont convexes et l'inégalité vectorielle doit se comprendre composante par composante (elle est équivalente aux contraintes d'inégalité pour ).