Suite de Jacobsthal

En mathématiques, la suite de Jacobsthal est une suite d'entiers portant le nom du mathématicien allemand Ernst Jacobsthal (en) (1882-1965). Comme la suite de Fibonacci, elle modélise l'accroissement d'une population de lapins.

Sachant qu'un couple de lapins donne naissance à deux nouveaux couples chaque mois et que chaque couple commence à engendrer à partir du deuxième mois suivant sa naissance, on demande le nombre total de couples au n-ième mois.

La suite commence par 0 et 1, puis chaque terme est obtenu en ajoutant le nombre précédent à deux fois le nombre anté-précédent. Les premiers termes en sont donc :

0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, 683, 1365, 2731, 5461, 10923, 21845, 43691, 87381, 174763, 349525,… suite A001045 de l'OEIS.

C'est aussi une suite de Lucas , obtenue pour .

D'après Knuth, Ernst Jacobsthal n'a probablement jamais vu les valeurs de cette suite. C'est le mathématicien australien Alwyn Francis Horadam qui a utilisé l'appellation « suite de Jacobsthal », car « une suite aussi importante a besoin d'un nom, et il existe une loi qui dit que le nom de quelque chose ne devrait jamais être celui de son découvreur » (loi de Stigler)[1].

Définition et formules

[modifier | modifier le code]

La suite de Jacobsthal est donc définie par récurrence double par :

L'application de la formule de Binet pour les suites récurrentes linéaires donne :

on en déduit les formules de récurrence simples :

d'où :

La fonction génératrice est

La somme des inverses des nombres de Jacobsthal non nuls est environ égale à 2,7186, résultat légèrement supérieur à e.

En prolongeant la suite aux indices négatifs de sorte à avoir , pour tout entier relatif , on a :

et
OEISA139818

Suite de Jacobsthal-Lucas

[modifier | modifier le code]

La suite de Jacobsthal-Lucas est la suite de Lucas associée à  : . Seules les valeurs initiales diffèrent :

Récurrence simple :

Formule générale:

Les premières valeurs sont:

2, 1, 5, 7, 17, 31, 65, 127, 257, 511, 1025, 2047, 4097, 8191, 16385, 32767, 65537, 131071, 262145, 524287, 1048577,… suite A014551 de l'OEIS.

Nombres oblongs de Jacobsthal

[modifier | modifier le code]

Ce sont les produits de deux termes consécutifs : .

Premières valeurs : : 0, 1, 3, 15, 55, 231,… suite A084175 de l'OEIS.

Notes et références

[modifier | modifier le code]
(en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Jacobsthal number » (voir la liste des auteurs).
  1. (en) Neil Sloane, « Jacobsthal sequence » (consulté le ).

Liens externes

[modifier | modifier le code]