Transformée de Fourier à court terme

La transformée de Fourier à court terme (TFCT), ou transformée de Fourier locale (en anglais Short-Time Fourier Transform (STFT)) ou encore transformée de Fourier à fenêtre glissante est une transformation liée aux transformées de Fourier utilisée pour déterminer la fréquence sinusoïdale et la phase d'une section locale d'un signal. Le carré de son module donne le spectrogramme.

Transformée de Fourier locale

[modifier | modifier le code]

Transformée de Fourier locale continue

[modifier | modifier le code]

Dans le cas continu, la fonction à transformer est multipliée par une autre fonction qui n'est pas nulle seulement pour une petite période de temps (une fonction à support compact ou a décroissance rapide dite fenêtre). Mathématiquement elle s'écrit :

est la fonction de fenêtrage. Ici, j désigne l'unité imaginaire.

Lorsque la fonction de fenêtrage est une fonction gaussienne, la transformée de Fourier à court terme est également appelée transformée de Gabor.

Transformée de Fourier locale discrète

[modifier | modifier le code]

La transformée de Fourier locale discrète est définie par :

Transformée de Fourier locale inverse

[modifier | modifier le code]

La transformée de Fourier locale est inversible, le signal d'origine peut être retrouvé en appliquant à la transformée la transformée de Fourier locale inverse.

Transformée en ondelettes discrète