Plusieurs définitions équivalentes existent. Cela est dû aux relations entre structures complexes, symplectiques et riemanniennes. Une manière de le comprendre est de constater que le groupe unitaire (qui joue le rôle de groupe de structure d'une variété kählérienne) est l'intersection d'un couple quelconque des trois groupes , et .
La condition d'intégrabilité s'écrit dans le premier cas , dans le second cas . Elle exprime géométriquement le fait que le transport parallèle soit linéaire complexe. On dit dans ce cas que (ou parfois ) est une métrique kählérienne sur . On vérifie que s'identifie à un facteur constant près à la forme
volume de g, ce qui montre que est une forme symplectique. On l'appelle la forme de Kähler de la variété kählérienne .
Le lien entre les structures hermitienne , riemannienne et symplectique est apparent à travers la relation .
Les variétés kählériennes sont des objets riches en géométrie différentielle. Il y a d'ailleurs des obstructions topologiques à l'existence d'une métrique kählérienne sur une variété complexe (contrairement à celle d'une métrique hermitienne par exemple). Il est par exemple facile de voir que la classe de cohomologie d'une forme de Kähler (appelée classe kählérienne) sur une variété compacte ne peut être nulle. L'ensemble des classes kählérienne est appelé cône kählérien.
Les variétés kählériennes sont entre autres le cadre naturel pour développer une théorie de Hodge complexe analogue à celle du cas réel.
La métrique induite sur une sous-variété complexe d'une variété kählérienne est encore une métrique kählérienne. En particulier toute variété de Stein (plongée dans un espace euclidien complexe) est kählérienne, ainsi que toute variété algébrique régulière (plongée dans un espace projectif complexe). Ce fait est fondamental pour leur théorie analytique.