Les verres bioactifs sont des matériaux dont les propriétés sont retenues par la chirurgie pour leur emploi comme substitut osseux. En effet après leur insertion dans l'organisme, ils se couvrent d'une couche d'hydroxyapatite carbonatée, similaire à la phase minérale de l'os naturel et qui permet l'établissement de liaisons chimiques avec les cellules osseuses, donc un accrochage fort de l'implant. Cependant, les verres bioactifs sont peu utilisés en chirurgie du fait de leurs médiocres propriétés mécaniques. Ils sont cependant intéressants en couches minces pour associer leurs caractéristiques bioactives à l'intérêt d'autres matériaux.
Deux voies de synthèse sont possibles :
La première polymérisation sol-gel a été réalisée par Ebelmen, qui décrit dès 1845 « la conversion en verre solide de l’acide silicique exposé à l’air humide ». Cependant, le commencement de la polymérisation sol-gel date des années 1930 avec l’utilisation pour la première fois, par la firme allemande Schott, de ce procédé pour fabriquer des récipients en verre. Le principe de celui-ci, autrefois appelé « chimie douce », repose sur l’utilisation d’une succession de réactions d’hydrolyse-condensation, à température modérée, pour préparer des réseaux d’oxydes, qui peuvent être à leur tour traités thermiquement. La formation du réseau d’oxydes a lieu, en solution, à une température proche de l’ambiante. Il s’agit d’un processus de conversion en solution d’alcoolates métalliques, tels que les alcoolates de silicium, zirconium, aluminium, titane... La réaction de synthèse de verres par voie sol-gel repose sur la propriété qu’ont les alcoolates de silicium de pouvoir plus ou moins s’hydrolyser en présence d’eau. Suivant l’intensité de cette hydrolyse, il se formera par polycondensation un réseau tridimensionnel polymérisé avec des fonctions silanol plus ou moins ouvertes.
Les différentes étapes du procédé sol-gel sont[1] :
Le silicium est généralement introduit sous forme de tétraéthylorthosilicate (TEOS)[2]. Moins fréquemment on rencontre le tétraméthylorthosilicate ou TMOS[3]. L’utilisation de ces organométalliques permet d’obtenir avec succès des verres de compositions très variées. Cette relative liberté est appliquée avec intérêt dans le domaine des bioverres, en permettant de lever certaines limites par rapport à la méthode par fusion classique de synthèse des verres. En effet lors de la trempe du verre la cristallisation de composés non désirés peut apparaitre (cas du phosphore). De plus, une des facultés intéressantes des alcoolates métalliques est de pouvoir s’hydrolyser facilement en présence d’eau. La réaction est thermodynamiquement favorable. Cependant la cinétique de réaction en l’absence de catalyseur est faible, plus de 1000 h pour le TEOS seul. La réaction peut être accélérée ; l’usage d’un catalyseur est alors requis. Les catalyseurs peuvent être de nature acide ou basique, ou bien être un ion ou une molécule influençant les réactions élémentaires de l’hydrolyse. Des réactions de condensation, responsables de la densification progressive du gel, se produisent également avec ces précurseurs. Elles peuvent être de deux types :
Afin de former un réseau vitreux rapidement il faut donc favoriser l’hydrolyse et la condensation du TEOS, des réactions par nature assez lentes. Pour accélérer ces réactions, l’emploi d’un catalyseur est indispensable. L’usage d’acides forts comme agents d’hydrolyse de l’alcoolate de silicium sont régulièrement cités[4].
L’hydrolyse partielle du précurseur ne permet que d’obtenir un taux de substitution en moyenne égal à deux sur les quatre possibles. Ce fait à une conséquence sur la structure du sol : les molécules du TEOS s’alignent sur une structure plutôt linéaire, proche de ce que l’on peut observer pour une polymérisation classique en chimie organique[5] Le point de gel est atteint lorsque les chaînes, de plus en plus longues au cours du temps, finissent par s’entremêler en formant un réseau vitreux densifié.
Pour la catalyse basique[6] :
Avec ce type de catalyse, la réaction d’hydrolyse est massive et rapide, les réactions de polycondensation seront elles aussi dotées d’une cinétique importante ; la viscosité du gel augmente de façon vive et le point de gel est vite atteint. De plus, le taux de substitution de l’atome de silicium central dans la molécule de TEOS atteint sa valeur maximale de quatre. Il en résulte une possibilité de réaction de la molécule dans les trois directions de l’espace. Lors des réactions de polycondensation, ce phénomène se produit et on assiste à la croissance de sphères de silicium[7] qui voient leurs tailles augmenter jusqu’à ce que leurs surfaces entrent en contact l’une avec l’autre, permettant ainsi au sol d’atteindre le point de gel. Les bases utilisées peuvent être variées[8] ; certaines permettent des réactions de condensation plus modérées, en limitant l’augmentation du pH dans le solvant. Les catalyseurs basiques pouvant être employés sont :
On peut diminuer le pH à l’aide d’un acide faible, et ainsi ralentir significativement les réactions de condensation[9].
L’acte catalytique du fluor repose sur le même mécanisme que celui des bases, à la seule différence que l’ion F− remplace OH− en tant que nucléophile[10]. Cela permet en outre à la réaction d’hydrolyse d’être indépendante du pH. L’acide fluorhydrique est souvent utilisé comme précurseur du fluor. Il permet une gélification rapide. On note également l’emploi d’halogénure de potassium KF, mais aussi NaF et NH4F. L’ion fluorure est d’une taille similaire à l’ion hydroxyde et possède lui aussi la capacité d’augmenter la coordination du silicium. Celle-ci est normalement de quatre, mais il apparait par un intermédiaire réactionnel penta-coordiné. Les fluorures sont les catalyseurs les plus efficaces vis-à-vis de la gélification.
Si l’on additionne de l’acide acétique dans le sol avec du TEOS, le temps mis par le sol pour atteindre le point de gel devient très court, du même ordre que le temps mis avec les acides forts. Ceci n’est pas normal si l’on considère uniquement la fonction acide de la molécule : la quantité de protons libérés dans le milieu étant moindre qu’avec un acide fort, la vitesse de réaction devrait être plus basse. La réaction de l’acide acétique avec le TEOS conduit à la formation d’un silyl ester[11]. Cet intermédiaire à la capacité de réagir facilement sur une fonction alcool pour finalement obtenir un silanol. Les protons H+ ne jouent pas de rôle dans ces mécanismes, rendant la catalyse par l’acide acétique indépendante du pH.
Composant majoritaire de l’os avec le calcium, le phosphore est un élément fondamental pour l’activité biologique de l’implant. L’oxyde de phosphore P2O5 est aussi un élément formateur de réseau vitreux agissant de concert avec le silicium dans le cas de mélange de ces deux oxydes ou de dopage d’une composition. Le TEP, ou triéthylphosphate est souvent employé en synthèse sol-gel. L’hydrolyse du TEP peut se produire en milieu acide ou basique, à l’aide des catalyseurs des mêmes noms[12] Les acides phosphoriques sont aussi utilisés. Ce type précurseur ne subit pas de réactions d’hydrolyse et de condensation au sein du sol.
Avec la méthode traditionnelle de fusion et trempe des oxydes, le sodium intervient comme modificateur de réseau : son oxyde est Na2O. Sa présence permet d’abaisser la température d’élaboration des verres, c’est un fondant. La silice permet d'obtenir un verre, mais son point de fusion est très élevé (1 730 °C). En ajoutant des fondants, on abaisse cette température à 1 400 °C et on facilite les possibilités de travail. L’ajout d’un oxyde de sodium provoque également la rupture d’une liaison Si-O et l’apparition d’un oxygène non-pontant. Cela a pour conséquences de fragiliser le réseau et d’augmenter sa solubilité dans les milieux aqueux. Dans le cadre d’une immersion en fluide physiologique simulé (SBF) de bioverres contenant du sodium, il a été remarqué plusieurs points montrant l’avantage de cet élément :
Dans un procédé sol-gel, le sodium peut être introduit par plusieurs catégories de précurseurs :
Le calcium est un élément essentiel des verres : il est employé depuis le Moyen Âge comme stabilisateur de réseau. Son oxyde est CaO. Comme le sodium, il introduit des liaisons oxygène non pontants, ce qui a pour conséquence une stabilisation du verre. Celui-ci sera alors plus résistant aux attaques chimiques, comme une dissolution par l’eau. Afin d’introduire cet éléments divers précurseurs sont utilisés :