Os linfocitos T axudantes CD4+ son leucocitos que son parte esencial do sistema inmunitario humano e con frecuencia denomínanse células CD4, células T axudantes ou células T4. Denomínanse células axudantes porque un dos seus principais papeis é enviar sinais a outros tipos de células inmunes, como as células asasinas CD8. As células CD4 envían un sinal ás células CD8 para que destrúan e acaben cunha infección vírica. Se diminúe a cantidade de células CD4, como por exemplo en casos de infección por VIH/SIDA ou despois dun tratamento de inmunosupresión previo a un transplante, o corpo faise vulnerable a un gran número de infeccións que doutro modo serían combatidas eficazmente.
Presenta catro dominios de inmunoglobulina (D1 a D4) que se expoñen na superficie da célula ao medio extracelular:
D1 e D3 lembran os dominios variables das inmunoglobulinas (IgV).
D2 e D4 parécense aos dominios constantes das inmunoglobulinas (IgC).
O dominio D1 do CD4 interacciona co dominio β2 das moléculas do MHC de clase II. As células T que expresan o CD4 (e non o CD8) na súa superficie son, por tanto, específicas para os antíxenos presentados polo MHC de clase II (e non para o MHC de clase I).
A curta cola citoplasmática/intracelular (C) do CD4 contén unha secuencia especial de aminoácidos que permite que interaccione coa molécula lck (unha quinase do interior da célula).
O CD4 é un correceptor que axuda ao receptor de células T (TCR) na súa comunicación coa célula presentadora de antíxenos. Por medio do seu dominio intraceluar, o CD4 amplifica o sinal xerado polo TCR recrutando o encimatirosina quinaselck, que é esencial na activación de moitos compoñentes moleculares da cascada de sinalización dun linfocito T activado. O CD4 tamén interacciona directamente con moléculas do MHC de clase II na superficie da célula presentadora de antíxenos utilizando o seu dominio extracelular. O dominio extracelular adopta unha estrutura en sándwich beta de tipo inmunoglobulina con sete cadeas en dúas follas beta, formando un motivo greca.[4]
O VIH-1 utiliza o CD4 para introducirse dentro das células T hospedes ao unirse a el pola proteína gp120 da envoltura viral.[12] A unión ao CD4 crea un cambio na conformación da gp120 que lle permite ao VIH-1 unirse ao correceptor expresado na célula hóspede chamado receptor de quimocinaCCR5 ou CXCR4. Despois dun cambio estrutural noutra proteína viral (a gp41), o VIH insire un péptido de fusión na célula hóspede que fai que a membrana externa do virus se fusione coa membrana plasmática celular.
A infección por VIH produce unha progresiva redución do número de células T axudantes CD4+. O reconto de CD4 utilízase para decidir cando se empeza o tratamento durante a infección por VIH e posteriormente para avaliar a eficacia do tratamento. Os valores sanguíneos normais exprésanse xeralmente como o número de células por microlitro (ou milímetro cúbico, mm3) de sangue, con valores normais para as células CD4 de entre 500 e 1200 células/mm3.[13] Un reconto de CD4 mide o número de células T que expresan o CD4, e serve para avaliar o estado do sistema inmunitario do paciente, aínda que non mide directamente a cantidade de virus (por exemplo, a presenza de ADN viral, ou de anticorpos específicos contra o virus). Xeralmente o tratamento comeza cando os recontos de CD4 chegan a 350 células por microlitro (con valores de menos de 200 considérase que o individuo infectado ten SIDA).
↑Alain Bernard (1984). Leucocyte typing: human leucocyte differentiation antigens detected by monoclonal antibodies: specification, classification, nomenclature: [report on the first international references workshop sponsored by INSERM, WHO and IUIS]. Berlin: Springer. pp. pages 45–48. ISBN0-387-12056-4.
↑Brady RL, Dodson EJ, Dodson GG, Lange G, Davis SJ, Williams AF, Barclay AN (1993). "Crystal structure of domains 3 and 4 of rat CD4: relation to the NH2-terminal domains". Science260 (5110): 979–83. PMID8493535. doi:10.1126/science.8493535.
↑Zeitlmann, L; Sirim P, Kremmer E, Kolanus W (2001). "Cloning of ACP33 as a novel intracellular ligand of CD4". J. Biol. Chem. (United States) 276 (12): 9123–32. ISSN0021-9258. PMID11113139. doi:10.1074/jbc.M009270200.
↑Hawash IY, Hu XE, Adal A, Cassady JM, Geahlen RL, Harrison ML (2002). "The oxygen-substituted palmitic acid analogue, 13-oxypalmitic acid, inhibits Lck localization to lipid rafts and T cell signaling". Biochim. Biophys. Acta1589 (2): 140–50. PMID12007789. doi:10.1016/S0167-4889(02)00165-9.
↑Kwong PD, Wyatt R, Robinson J, Sweet RW, Sodroski J, Hendrickson WA (1998). "Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody". Nature393 (6686): 648–59. PMID9641677. doi:10.1038/31405.
↑Zamani M, Tabatabaiefar MA, Mosayyebi S, Mashaghi A, Mansouri P (2010). "Possible association of the CD4 gene polymorphism with vitiligo in an Iranian population". Clin. Exp. Dermatol.35 (5): 521–4. PMID19843086. doi:10.1111/j.1365-2230.2009.03667.x.
Greenway AL, Holloway G, McPhee DA; et al. (2004). "HIV-1 Nef control of cell signalling molecules: multiple strategies to promote virus replication". J. Biosci.28 (3): 323–35. PMID12734410. doi:10.1007/BF02970151.
Bénichou S, Benmerah A (2003). "[The HIV nef and the Kaposi-sarcoma-associated virus K3/K5 proteins: "parasites"of the endocytosis pathway]". Med Sci (Paris)19 (1): 100–6. PMID12836198. doi:10.1051/medsci/2003191100.
Leavitt SA, SchOn A, Klein JC; et al. (2004). "Interactions of HIV-1 proteins gp120 and Nef with cellular partners define a novel allosteric paradigm". Curr. Protein Pept. Sci.5 (1): 1–8. PMID14965316. doi:10.2174/1389203043486955.
Tolstrup M, Ostergaard L, Laursen AL; et al. (2004). "HIV/SIV escape from immune surveillance: focus on Nef". Curr. HIV Res.2 (2): 141–51. PMID15078178. doi:10.2174/1570162043484924.
Hout DR, Mulcahy ER, Pacyniak E; et al. (2005). "Vpu: a multifunctional protein that enhances the pathogenesis of human immunodeficiency virus type 1". Curr. HIV Res.2 (3): 255–70. PMID15279589. doi:10.2174/1570162043351246.
Joseph AM, Kumar M, Mitra D (2005). "Nef: "necessary and enforcing factor" in HIV infection". Curr. HIV Res.3 (1): 87–94. PMID15638726. doi:10.2174/1570162052773013.
Anderson JL, Hope TJ (2005). "HIV accessory proteins and surviving the host cell". Current HIV/AIDS reports1 (1): 47–53. PMID16091223. doi:10.1007/s11904-004-0007-x.
Li L, Li HS, Pa; et al. (2006). "Roles of HIV-1 auxiliary proteins in viral pathogenesis and host-pathogen interactions". Cell Res.15 (11–12): 923–34. PMID16354571. doi:10.1038/sj.cr.7290370.