As proteínas mofoxénicas óseas ou BMP (do inglés bone morphogenetic proteins) son un grupo de factores de crecemento tamén coñecidos como citocinas e metabolóxenos.[1] Orixinalmente foron descubertas pola súa capacidade de inducir a formación de óso e cartilaxe, as BMP agora considérase que constitúen un grupo de sinais morfoxénicos esenciais, que orquestran a arquitectura dos tecidos ao longo do corpo.[2] A importante función dos sinais das BMP en fisioloxía ponse en evidencia pola multitude de efectos que ten a desregulación da sinalización das BMP en procesos patolóxicos. A enfermidade cancerosa a miúdo implica unha mala regulación do sistema de sinalización das BMP. A ausencia de sinalización das BMP é, por exemplo, un importante factor na progresión do cancro de colon,[3] e inversamente, a sobreactivación da sinalización das BMP despois dunha esofaxite inducida por refluxo provoca o esófago de Barrett, polo que é instrumental no desenvolvemento do adenocarcinoma na porción proximal do tracto gastrointestinal.[4]
As BMP humanas recombinantes (rhBMPs) son utilizadas en aplicacións ortopédicas como a fusión de vértebras (espondilodese), falta de soldadura dos ósos en fracturas e cirurxía oral. As rhBMP-2 e rhBMP-7 foron aprobadas pola FDA nos Estados Unidos para algúns usos. A rhBMP-2 causa máis sobrecrecemento óseo que calquera outra BMP e utilízase amplamente en indicacións non especificamente autorizadas nas que é beneficiosa.
As BMP para uso clínico prodúcense usando a tecnoloxía do ADN recombinante (BMPs recombinantes humanas; rhBMP).
As rhBMP utilízanse en cirurxías orais.[5][6][7] Recentemente, a BMP-7 empezou a usarse no tratamento da enfermidade renal crónica. Atopouse que a BMP-7 en modelos animais murinos reverte a perda de glomérulos debida á esclerose. A compañía Curis foi pioneira no desenvolvemento de BMP-7 para este uso. En 2002, Curis cedeu a licenza da BMP-7 a Ortho Biotech Products, unha compañía filial de Johnson & Johnson.
Aínda que a rhBMP-2 e a rhBMP-7 se utilizan no tratamento dunha variedade de condicións relacionadas cos ósos, como a fusión de vértebras e a falta de fusión de ósos en fracturas; non se coñecen os riscos deste tratamento non especificamente aprobado oficialmente pero considerado beneficioso e permitido (tratamento off-label nos Estados Unidos).[8] Aínda que as rhBMPs están aprobadas para aplicacións específicas (fusións de vértebras lumbares cunha aproximación anterior e falta de fusión en fracturas de tibia), ata un 85% do uso total das BMP é para indicacións non especificacmente aprobadas.[8] A rhBMP-2 utilízase amplamente noutras técnicas de fusións de vértebras lumbares (por exemplo, usando unha aproximación posterior, ou as fusións cervicais anteriores ou posteriores[8]).
En 2001, a FDA dos Estados Unidos aprobou a rhBMP-7 (tamén coñecida como OP-1; Stryker Biotech) como unha "exención de aparello humanitaria" (humanitarian device exemption, exención de prohibición ou permiso usado para raras enfermidades en que o tratamento pode ser beneficioso aínda que non se fixeron ensaios suficientes) como alternativa a un autotrasplante en fracturas de ósos longos que non se soldan.[8] En 2004, esta exención foi estendida para o uso como alternativa a autotrasplantes para fusións posterolaterais.[8] En 2002, a rhBMP-2 (INFUSE®; Medtronic) foi aprobada para as fusións anteriores intercorpo de vértebras lumbares (ALIFs) cun aparello de fusión lumbar.[8] En 2008 foi aprobada para reparar pseudoartroses lumbares posterolaterais, fracturas abertas da diáfise da tibia con fixación por cravo intramedular.[8] Nestes produtos, as BMP son enviadas ao sitio da fractura ao seren incorporadas no implante óseo, e van sendo liberadas gradualmente para permitir a formación de óso, xa que a estimulación do crecemento polas BMP debe ser localizado e mantido durante algunhas semanas. As BMP son eluídas a través dunha matriz de coláxeno purificada, que é implantada no sitio da fractura.[9] A rhBMP-2 axuda ao crecemento do óso máis eficazmente que ningunha outra rhBMP, polo que é moito máis utilizada clinicamente.[9] Hai "pouco debate ou controversia" sobre a efectividade da rhBMP-2 na estimulación do crecemento do óso en fusións de vértebras,[9] e Medtronic realiza vendas por valor de 700 millóns de dólares anuais destes produtos.[10]
A rhBMP non debería utilizarse rutineiramente nas fusións vertebrais cervicais anteriores, tales como a disectomía e fusión cervical anterior.[11] Hai informes que indican que esta terapia causa inchamento do tecido brando, o cal á súa vez pode causar complicacións que poden ser mortais debido á dificultade para tragar e a presión no tracto respiratorio.[11]
As BMP interaccionan con receptores específicos da superfice celular, denominados proteínas morfoxénicas óseas (BMPR).
A transdución de sinais por medio dos BMPR ten como resultado a mobilización de membros da familia de proteínas SMAD.Estas vías de sinalización implican as BMP, BMPR e SMAD e son importantes no desenvolvemento do corazón, sistema nervioso central e cartilaxe, así como no desenvolvemento óseo posnatal.
Desempeñan un importante papel durante o desenvolvemento embrionario sobre os padróns do embrión e a formación esquelética inicial. Por tanto, a alteración da sinalización das BMP pode afectar ao plan corporal do embrión en desenvolvemento. Por exemplo, a BMP4 e os seus inhibidores noggina e cordina axudan a regular a polaridade do embrión (é dicir, o padrón posterior-anterior). Especificamente, a BMP-4 e os seus inhibidores xogan un papel principal na neurulación e o desenvolvemento da placa neural. A BMP-4 envía sinais ás células do ectoderma para que se desenvolvan en células da pel, pero a secreción de inhibidores polo mesoderma subxacente bloquea a acción de BMP-4 para permitir que o ectoderma continúe no seu curso normal de desenvolvemento das células neurais.
Como membro da superfamilia de proteínas do factor de crecemento transformante beta, a sinalización da BMP regula diversos padróns embrionarios durante o desenvolvemento fetal e embrionario. Por exemplo, a sinalización de BMP controla a formación inicial do conduto de Muller, o cal é unha estrutura tubular formada no estado de desenvolvemento embrionario inicial que finalmente orixina os tractos reprodutores femininos. A inhibición química dos sinais da BMP en embrión de polo causa a disrupción da invaxinación do conduto de Muller e bloquea o engrosamento epitelial da rexión formadora do conduto de Muller, o que indica que os sinais da BMP exercen un papel no desenvolvemento inicial do conduto de Muller.[12] Ademais, a sinalización da BMP está implicada na formación dos tractos gastrointestinais anterior e posterior,[13] o padrón de vilosidades intestinais, e a diferenciación endocárdica. As vilosidades contribúen a incrementar a absorción efectiva de nutrientes ao aumentaren a área superficial do intestino delgado. A perda ou ganancia de función da sinalización da BMP altera os padróns de agrupamentos de vilosidades e a súa emerxencia nun modelo intestinal de rato.[14] O sinal da BMP derivado do miocardio está tamén implicado na diferenciación endocárdica durante o desenvolvemento do corazón. A inhibición do sinal da BMP en modelos embrionarios de peixe cebra causa unha forte redución da diferenciación endocárdica, pero só ten pouco efecto no desenvolvemento miocárdico.[15] Ademais, cómpre a interrelación Notch-Wnt-Bmp para formar os padróns radiais durante o desenvolvemento da cóclea de rato de maneira antagonista.[16]
As mutacións nas BMP e os seus inhibidores están asociadas con varios trastornos que afectan ao esqueleto.
Varias BMP denomínanse tamén 'proteínas morfoxenéticas derivadas de cartilaxe' (CDMP), mentres que outras reciben o nome de 'factores de diferenciación do crecemento (GDF).
Orixinalmente, descubríranse sete destas proteínas. Delas, seis (da BMP2 á BMP7) pertencen á superfamilia do factor de crecemetno transformante beta de proteínas. A BMP1 é unha metaloprotease. Desde entón, descubríronse trece BMP máis, facendo un total de vinte.[9]
BMP | Funcións coñecidas | Locus xénico |
---|---|---|
BMP1 | *A BMP1 non pertence á familia de proteínas de TGF-β. É unha metaloprotease que actúa no procoláxeno I, II e III. Está implicado no desenvolvemento da cartilaxe. | Cromosoma 8; localización: 8p21 |
BMP2 | Actúa como un homodímero unido por ponte disulfuro e induce a formación de óso e cartilaxe. É un candidato a mediador retinoide. Xoga un papel clave na diferenciación dos osteoblastos. | Cromosoma 20; localización: 20p12 |
BMP3 | Induce a formación do óso. | Cromosoma 14; localización: 14p22 |
BMP4 | Regula a formación dos dentes, extremidades e óso a partir do mesoderma. Tamén xoga un papel na reparación de fracturas, formación de epiderme, formación do eixe dorsoventral, e desenvolvemento do folículo ovárico. | Cromosoma 14; localización: 14q22-q23 |
BMP5 | Realiza funcións no desenvolvemento da cartilaxe. | Cromosoma 6; localización: 6p12.1 |
BMP6 | Xoga un papel na integridade das articulacións en adultos. Controla a homeostase do ferro por medio da regulación de hepcidina. | Cromosoma 6; localización: 6p12.1 |
BMP7 | Xoga un papel clave na diferenciación de osteoblastos. Tamén induce a produción de SMAD1. Tamén é clave no desenvolvemento e reparación renal. | Cromosoma 20; localización: 20q13 |
BMP8a | Implicado no desenvolvemento de óso e cartilaxe. | Cromosoma 1; localización: 1p35–p32 |
BMP8b | Expresado no hipocampo. | Cromosoma 1; localización: 1p35–p32 |
BMP10 | Pode xogar un papel na trabeculación do corazón do embrión. | Cromosoma; localización: 2p14 |
BMP11 | Controla o padrón anterior-posterior. | Cromosoma 12; localización: 12p |
BMP15 | Pode xogar un papel nos ovocitos e o desenvolvemento folicular. | Cromosoma X; localización: Xp11.2 |
Desde o tempo de Hipócrates sábese que o óso ten unha considerable capacidade de rexeneración e reparación. Nicholas Senn, un cirurxián no Rush Medical College de Chicago, describiu a utilidade dos implantes de óso descalcificados no tratamento da osteomielite e de certas deformidades óseas.[18] Pierre Lacroix propuxo que a responsable podería ser unha substancia hipotética, a osteoxenina, que podería iniciar o crecemento óseo.[19]
A base biolóxica da morfoxénese ósea foi mostrada por Marshall R. Urist. Urist fixo o descubrimento clave de que segmentos desmineralizados liofilizados de óso inducían a nova formación de óso cando se implantaban en bolsas musculares en coellos. Este descubrimento foi publicado en 1965 por Urist na revista Science.[20] Urist propuxo o nome "Proteína Morfoxénica Ósea" na literatura científica no Journal of Dental Research en 1971.[21]
A indución do óso é unha fervenza de múltiples pasos secuenciais. Os pasos esenciais nesta fervenza son a quimiotaxe, mitose e diferenciación celular. Os estudos iniciais de Hari Reddi desvelaron a secuencia de eventos implicados na morfoxénese ósea inducida pola matriz ósea.[22] Baseándose no traballo anterior, parecía probable que os morfóxenos estivesen presentes na matriz ósea. Usando unha batería de bioensaios para a formación de óso, fíxose un estudo sistemático para illar e purificar as proteínas morfoxénicas óseas.
Un importante problema para a purificación era a insolubilidade da matriz ósea desmineralizada. Para superar esta barreira, Hari Reddi e Kuber Sampath usaron extractos disociativos, como a guanidina HCL 4M, urea 8M, ou SDS ao 1%.[23] O extracto soluble só ou os residuos insolubles sós eran incapaces de inducir a produción de novo óso. Esta traballo suxeriu que a actividade osteoxénica óptima require unha sinerxia entre o extracto soluble e o substrato colaxenoso insoluble. Isto non só supuxo un avance significativo cara á purificación final das proteínas morfoxeneticas óseas no laboratorio de Reddi,[24][25] senón que tamén finalmente permitiu a clonación das BMP feita por John Wozney e colegas no Genetics Institute.[26]
Commons ten máis contidos multimedia sobre: Proteína morfoxénica ósea |