Se non se indica outra cousa, os datos están tomados en condicións estándar de 25 °C e 100 kPa.
O retinal, tamén chamado retinaldehido, é unha forma de vitamina A. Orixinalmente chamouse retineno,[2] e foi renomeado[3] despois de que se descubriu que era o aldehido da vitamina A.[4][5] O retinal é unha das moitas formas da vitamina A (cuxo número varía coa especie). Pode encontrarse nas formas 11-cis-retinal e todo-trans-retinal. O retinal é un cromóforopolieno, que está unido a proteínas chamadas opsinas, e nel está baseada a química da visión animal. Ademais, o retinal permite que certos microorganismos convertan a luz en enerxía metabólica.
Os animais vertebrados inxiren retinal directamente da carne, ou prodúceno a partir de carotenoides, tanto a partir dun ou dous carotenos (α-caroteno, β-caroteno) coma a partir de β-criptoxantina, un tipo de xantofila. Á súa vez, estes carotenoides deben obterse de plantas e outros organimos fotosintéticos. Ningún outro carotenoide pode ser convertido polos animais en retinal, e algúns carnívoros non poden converter ningún carotenoide en absoluto. As outras formas principais de vitamina A son o retinol e unha forma parcialmente activa, o ácido retinoico, que poden ambos ser producidos a partir de retinal.
Invertebrados como os insectos e luras usan formas hidroxiladas do retinal nos seus sistemas visuais, que derivan da conversión doutras xantofilas.
catalizado por unha beta-caroteno 15,15'-monooxixenase[7]
ou unha beta-caroteno 15,15'-dioxixenase.[8]
Igual que os carotenoides son os precursores do retinal, o retinal é o precursor doutras formas de vitamina A. O retinal é interconvertible co retinol (ROL), a forma de almacenamento e transporte da vitamina A.
O retinal é un cromóforo conxugado. No ollo humano, o retinal empeza tendo a configuración de 11-cis-retinal, a cal, ao capturar un fotón da lonxitude de onda correcta, se endereita adoptando a configuración todo-trans-retinal. Este cambio configuracional empúrrao contra a proteína opsina na retina, o cal orixina unha fervenza de sinalizacións químicas que pode causar a percepción da luz ou de imaxes no cerebro humano. O espectro de absorbancia do cromóforo depende das súas interaccións coa proteína opsina á cal está unido, polo que diferentes complexos retinal-opsina absorben fotóns de diferentes lonxitudes de onda (cores da luz).
As proteínas opsinas son os pirgmentos visuais que se unen ao retinal atopados nas células fotorreceptoras da retina. Unha opsina está formada por un feixe de sete hélices alfa transmembrana conectadas por seis bucles. Nos bastóns as moléculas de opsina están incrustadas nas membranas de discos que están completamente dentro da célula. A cabeza N-terminal da molécula esténdese ao interior do disco, e a cola C-terminal esténdese ao citoplasma da célula. En células cono os discos son definidos pola membrana plasmática da célula, polo que a cabeza N-terminal esténdese fora da célula. O retinal únese covalentemente a unha lisina na hélice transmembrana máis próxima ao C-terminal da proteína por medio dun enlace de base de Schiff. A formación do enlace de base de Schiff implica a eliminación do átomo de oxíxeno do retinal e dous átomos de hidróxeno do grupo amino libre da lisina, orixinando H2O. O retinilideno é o grupo divalente formado ao quitar o átomo de oxíxeno do retinal, e por iso as opsinas foron chamadas proteínas retinilideno.
Aínda que os mamíferos usan o retinal exclusivamente como o cromóforo da opsina, outros grupos de animais utilizan adicionalmente catro cromóforos estreitamente relacionados ao retinal. Son o 3,4-dideshidrorretinal (vitamina A2), o (3R)-3-hidroxirretinal, (3S)-3-hidroxirretinal (ambos vitamina A3) e o (4R)-4-hidroxirretinal (vitamina A4). Moitos peixes e anfibios usan o 3,4-dideshidrorretinal, tamén chamado deshidrorretinal. Coa excepción da suborde de dípterosCyclorrhapha, todos os insectos examinados usan o enantiómeroR do 3-hidroxirretinal. O enantiómero R é o esperado se o 3-hidroxirretinal se produce directamente a partir de xantofilas. Os Cyclorrhapha, como Drosophila, usan o (3S)-3-hidroxirretinal.[15][16] A lura Watasenia scintillans utiliza o (4R)-4-hidroxirretinal.
O ciclo visual é unha vía encimática circular, da que depende a fototransdución. Xera 11-cis-retinal. Por exemplo, o ciclo visual dos bastóns de mamíferos é o seguinte:
Os pasos 3, 4, 5 e 6 teñen lugar nos segmentos externos dos bastóns, e os pasos 1, 2 e 7 prodúcense nas células do epitelio pigmentario retiniano.
As RPE65 isomerohidrolases son homólogas das beta-caroteno monooxixenases;[6] o encima homólogo ninaB en Drosophila ten actividade de carotenoide-oxixenase formadora de retinal e actividade de isomerase de todo-trans a 11-cis.[19]
O todo-trans-retinal é tamén un compoñente esencial de opsinas microbiansas como a bacteriorrodopsina, a canlerrodopsina e a halorrodopsina. Nestas moléculas, a luz causa que o todo-trans-retinal se converta en 13-cis-retinal, que despois cicla de novo a todo-trans-retinal no estado escuro. Estas proteínas non están relacionadas evolutivamente coas opsinas animais e non son GPCRs; o feito de que ambas utilicen o retinal é o resultado dunha evolución converxente.[20]
↑BALL, S; GOODWIN, TW; MORTON, RA (1946). "Retinene1-vitamin A aldehyde.". The Biochemical Journal40 (5–6): lix. PMID20341217.
↑ 6,06,1von Lintig, Johannes; Vogt, Klaus (2000). "Filling the Gap in Vitamin A Research: Molecular Identification of An Enzyme Cleaving Beta-carotene to Retinal". Journal of Biological Chemistry275 (16): 11915–11920. PMID10766819. doi:10.1074/jbc.275.16.11915.
↑Woggon, Wolf-D. (2002). "Oxidative cleavage of carotenoids catalyzed by enzyme models and beta-carotene 15,15´-monooxygenase". Pure and Applied Chemistry74 (8): 1397–1408. doi:10.1351/pac200274081397.
↑Lin, Min; Zhang, Min; Abraham, Michael; Smith, Susan M.; Napoli, Joseph L. (2003). "Mouse Retinal Dehydrogenase 4 (RALDH4), Molecular Cloning, Cellular Expression, and Activity in 9-cis-Retinoic Acid Biosynthesis in Intact Cells". Journal of Biological Chemistry278 (11): 9856–9861. PMID12519776. doi:10.1074/jbc.M211417200.
↑Seki, Takaharu; Isono, Kunio; Ito, Masayoshi; Katsuta, Yuko (1994). "Flies in the Group Cyclorrhapha Use (3S)-3-Hydroxyretinal as a Unique Visual Pigment Chromophore". European Journal of Biochemistry226 (2): 691–696. PMID8001586. doi:10.1111/j.1432-1033.1994.tb20097.x.
↑Seki, Takaharu; Isono, Kunio; Ozaki, Kaoru; Tsukahara, Yasuo; Shibata-Katsuta, Yuko; Ito, Masayoshi; Irie, Toshiaki; Katagiri, Masanao (1998). "The metabolic pathway of visual pigment chromophore formation in Drosophila melanogaster: All-trans (3S)-3-hydroxyretinal is formed from all-trans retinal via (3R)-3-hydroxyretinal in the dark". European Journal of Biochemistry257 (2): 522–527. PMID9826202. doi:10.1046/j.1432-1327.1998.2570522.x.
Barlow, H.B.; Levick, W.R.; Yoon, M. (1971). "Responses to single quanta of light in retinal ganglion cells of the cat". Vision Research11 (Supplement 3): 87–101. PMID5293890. doi:10.1016/0042-6989(71)90033-2.
Send, Robert; Sundholm, Dage (2007). "Stairway to the conical intersection: A computational study of retinal isomerization". Journal of Physical Chemistry A111 (36): 8766–8773. Bibcode:2007JPCA..111.8766S. PMID17713894. doi:10.1021/jp073908l.