בתורת הגרפים, קוד פרווּפֵר (Prüfer Sequence) הוא התאמה בין קבוצת העצים הממוספרים בעלי n צמתים לבין אוסף הווקטורים באורך n-2 המורכבים ממספרים טבעיים בין 1 לבין n, באופן שמהווה מעין קידוד של המידע שדרוש כדי ליצור את הגרף. את הקידוד יצר המתמטיקאי הגרמני היינץ פרווּפֵר (1896-1934) ב-1918, וסיפק בכך את ההוכחה הקונסטרוקטיבית הראשונה למשפט של קיילי (1889) שלפיו מספר העצים הפורשים של הגרף השלם הוא .
קוד פרופר הוא פונקציה חד-חד-ערכית ועל מאפשר לזהות בעיות ספירה של עצים ממוספרים כבעיות הנוגעות לתכונות של סדרות של מספרים ובכך מאפשר ייבוא של שיטות קומבינטוריות בסיסיות לפתרון בעיות מורכבות בתורת הגרפים.
בהינתן עץ כלשהו וצומת כלשהו בתוכו נסמן ב- את העץ המתקבל על ידי הסרת הצומת v וכל הצלעות המחוברות אליו. סימון זה יאפשר להגדיר רקורסיבית את פעולת הקוד.
בכל שלב:
לאחר המחיקה נוצר עץ חדש עם מספר צמתים קטן באחד מהעץ המקורי, עליו נפעיל שוב את התהליך. התהליך יסתיים כאשר יישארו שני עלים המחוברים אחד לשני. היות שאורך הקוד שווה למספר צמתים שהוסרו - אורך הקוד הוא בעל n-2 איברים.
נציג פונקציה הופכית לקוד פרופר, כלומר, מעבר מוקטור באורך n-2 המכיל מספרים טבעיים מ-1 עד n לעץ תואם. נדרש להיעזר ברשימה של כל המספרים הטבעיים בין 1 ל-n ובוקטור הקוד. השלבים בתהליך:
נחזור על השלבים שוב ושוב, לאחר n-2 שלבים יישארו ברשימה שני מספרים והווקטור יהיה ריק. נחבר את שני הצמתים האלו בקשת.