कृत्रिम बुद्धि, के आज के समाज में कई अनुप्रयोग हैं। विशेष रूप से, तथाकथित 'वीक एआई' के बहुत से अनुप्रयोग हैं। वीक ए आई, एआई का वह रूप है जहां विशिष्ट कार्यों को करने के लिए ए आई प्रोग्राम विकसित किए जाते हैं, जिसका उपयोग चिकित्सा निदान , इलेक्ट्रॉनिक ट्रेडिंग , रोबोट नियंत्रण और रिमोट सेंसिंग सहित गतिविधियों की एक विस्तृत श्रृंखला के लिए किया जाता है । एआई का उपयोग कई क्षेत्रों और उद्योगों को विकसित करने और आगे बढ़ाने के लिए किया गया है, जिसमें वित्त, स्वास्थ्य सेवा, शिक्षा, परिवहन, और बहुत कुछ शामिल हैं। कृत्रिम बुद्धिमत्ता का प्रयोग हर तरह के क्षेत्र में हो रहा है ।कृत्रिम बुद्धिमत्ता(एआई) पैसे कमाने का भी जरिया बन रहा है अर्थात इसका उपयोग करके पैसा भी कमाया जा सकता है ।
अच्छे के लिए कृत्रिम बुद्धि (एआई फॉर गुड) एक आंदोलन है जिसमें संस्थाएं दुनिया की कुछ सबसे बड़ी आर्थिक और सामाजिक चुनौतियों से निपटने के लिए एआई को नियुक्त कर रही हैं। उदाहरण के लिए, दक्षिणी कैलिफोर्निया विश्वविद्यालय ने सेंटर फॉर आर्टिफिशियल इंटेलिजेंस इन सोसायटी को लॉन्च किया, जिसका उद्देश्य एआई का उपयोग करके सामाजिक रूप से प्रासंगिक समस्याओं जैसे कि बेघरों को संबोधित करना है। स्टैनफोर्ड में, शोधकर्ता सैटेलाइट इमेज का विश्लेषण करने के लिए एआई का उपयोग कर रहे हैं ताकि यह पता लगाया जा सके कि किन क्षेत्रों में गरीबी का स्तर सबसे अधिक है। [1]
वायु संचालन प्रभाग (AOD) नियम आधारित विशेषज्ञ प्रणालियों के लिए AI का उपयोग करता है । एओडी के पास मुकाबला और प्रशिक्षण सिमुलेटर, मिशन प्रबंधन एड्स, सामरिक निर्णय लेने के लिए सहायता प्रणाली और प्रतीकात्मक सारांश में सिम्युलेटर डेटा के पोस्ट प्रोसेसिंग के लिए सरोगेट ऑपरेटरों के लिए कृत्रिम बुद्धि का उपयोग है। [2]
सिमुलेटर में कृत्रिम बुद्धिमत्ता का उपयोग एओडी के लिए बहुत उपयोगी साबित हो रहा है। हवाई जहाज सिमुलेटर नकली उड़ानों से लिए गए डेटा को संसाधित करने के लिए कृत्रिम बुद्धिमत्ता का उपयोग कर रहे हैं। नकली उड़ान के अलावा, नकली विमान युद्ध भी है। कंप्यूटर इन स्थितियों में सबसे अच्छी सफलता परिदृश्यों के साथ आने में सक्षम हैं। कंप्यूटर बलों और काउंटर बलों की नियुक्ति, आकार, गति और ताकत के आधार पर रणनीति भी बना सकते हैं। कंप्यूटर द्वारा युद्ध के दौरान पायलटों को हवा में सहायता दी जा सकती है। कृत्रिम बुद्धिमान कार्यक्रम जानकारी को सॉर्ट कर सकते हैं और पायलट को सर्वोत्तम संभव युद्धाभ्यास प्रदान कर सकते हैं, न कि कुछ युद्धाभ्यासों से छुटकारा पाने का उल्लेख करने के लिए जो मानव के लिए प्रदर्शन करना असंभव होगा। कुछ गणनाओं के लिए अच्छे अनुमान प्राप्त करने के लिए एकाधिक विमानों की आवश्यकता होती है, ताकि डेटा को इकट्ठा करने के लिए कंप्यूटर सिम्युलेटेड पायलट का उपयोग किया जाए। [3] इन कंप्यूटर सिम्युलेटेड पायलटों का उपयोग भविष्य के हवाई यातायात नियंत्रकों को प्रशिक्षित करने के लिए भी किया जाता है।
प्रदर्शन को मापने के लिए AOD द्वारा उपयोग की जाने वाली प्रणाली इंटरएक्टिव फॉल्ट डायग्नोसिस एंड आईसोलेशन सिस्टम या IFDIS थी। यह एक नियम आधारित विशेषज्ञ प्रणाली है जो TF-30 दस्तावेजों और मैकेनिकों की विशेषज्ञ सलाह की जानकारी एकत्र करके TF-30 पर काम करती है। इस प्रणाली को RAAF F-111C के लिए TF-30 के विकास के लिए उपयोग करने के लिए डिज़ाइन किया गया था। प्रदर्शन प्रणाली का उपयोग विशेष श्रमिकों को बदलने के लिए भी किया गया था। सिस्टम ने नियमित श्रमिकों को सिस्टम के साथ संवाद करने और गलतियों, गलतफहमी से बचने, या विशेष श्रमिकों में से एक से बात करने की अनुमति दी।
AOD वाक् पहचान सॉफ़्टवेयर में कृत्रिम बुद्धिमत्ता का भी उपयोग करता है। एयर ट्रैफिक कंट्रोलर कृत्रिम पायलटों को दिशा-निर्देश दे रहे हैं और एओडी पायलटों को एटीसी को सरल प्रतिक्रियाओं के साथ जवाब देना चाहते हैं। भाषण सॉफ्टवेयर को शामिल करने वाले कार्यक्रमों को प्रशिक्षित किया जाना चाहिए, जिसका अर्थ है कि वे तंत्रिका नेटवर्क का उपयोग करते हैं। इस्तेमाल किया गया कार्यक्रम, वर्बेक्स 7000, अभी भी एक बहुत ही प्रारंभिक कार्यक्रम है जिसमें सुधार के लिए बहुत जगह है। सुधार अत्यावश्यक हैं क्योंकि एटीसी बहुत विशिष्ट संवाद का उपयोग करता है और सॉफ्टवेयर को हर बार सही और त्वरित रूप से संवाद करने में सक्षम होने की आवश्यकता होती है।
आर्टिफिशियल इंटेलिजेंस सपोर्टेड डिज़ाइन ऑफ़ एयरक्राफ्ट, [4] या एआईडीए, का उपयोग विमान के वैचारिक डिजाइन बनाने की प्रक्रिया में डिजाइनरों की मदद करने के लिए किया जाता है। यह कार्यक्रम डिज़ाइनरों को डिज़ाइन पर अधिक और फ़ोकस प्रक्रिया पर कम ध्यान केंद्रित करने की अनुमति देता है। सॉफ्टवेयर उपयोगकर्ता को सॉफ्टवेयर टूल्स पर कम ध्यान केंद्रित करने की भी अनुमति देता है। AIDA अपने डेटा की गणना करने के लिए नियम आधारित प्रणालियों का उपयोग करता है। यह AIDA मॉड्यूल की व्यवस्था का एक चित्र है। हालांकि सरल, कार्यक्रम प्रभावी साबित हो रहा है।
२००३ में, नासा के ड्राइडन फ़्लाइट रिसर्च सेंटर और कई अन्य कंपनियों ने एक ऐसा सॉफ़्टवेयर बनाया, जो एक क्षतिग्रस्त विमान को उड़ान जारी रखने के लिए तब तक सक्षम कर सकता था जब तक कि सुरक्षित लैंडिंग ज़ोन तक नहीं पहुँचा जा सके। [5] सॉफ्टवेयर सभी क्षतिग्रस्त घटकों की क्षतिपूर्ति घटकों पर भरोसा करके क्षतिपूर्ति करता है। सॉफ्टवेयर में उपयोग किया जाने वाला तंत्रिका नेटवर्क प्रभावी साबित हुआ और कृत्रिम बुद्धिमत्ता के लिए विजय का प्रतीक बना।
एकीकृत वाहन स्वास्थ्य प्रबंधन प्रणाली, जिसका उपयोग नासा द्वारा भी किया जाता है, एक विमान में विमान पर विभिन्न सेंसर से लिए गए डेटा की प्रक्रिया और व्याख्या होनी चाहिए। सिस्टम को विमान की संरचनात्मक अखंडता को निर्धारित करने में सक्षम होने की आवश्यकता है। वाहन को किसी भी तरह की क्षति होने पर सिस्टम को प्रोटोकॉल लागू करने की आवश्यकता होती है। [6]
हाईथम बोमर और पीटर बेंटले ने लंदन के यूनिवर्सिटी कॉलेज से एक टीम को एक कृत्रिम बुद्धिमत्ता आधारित इंटेलिजेंट ऑटोपायलट सिस्टम (आईएएस) विकसित करने के लिए एक ऑटोपायलट प्रणाली को विकसित करने के लिए डिज़ाइन किया गया है, जो एक उच्च अनुभवी पायलट की तरह व्यवहार करने के लिए डिज़ाइन किया गया है, जो आपातकालीन स्थिति जैसे गंभीर से सामना करता है। मौसम, अशांति या सिस्टम विफलता। [7] ऑटोपायलट को शिक्षित करना पर्यवेक्षित मशीन लर्निंग की अवधारणा पर निर्भर करता है "जो युवा ऑटोपायलट को एक मानव प्रशिक्षु के रूप में एक उड़ान स्कूल जाने के लिए मानता है"। [7] ऑटोपायलट ने कृत्रिम तंत्रिका नेटवर्क का उपयोग करके सीखने वाले मॉडल बनाने वाले मानव पायलट के कार्यों को रिकॉर्ड किया है । [7] ऑटोपायलट को तब पूरा नियंत्रण दिया जाता है और पायलट द्वारा इसे देखा जाता है क्योंकि यह प्रशिक्षण अभ्यास को अंजाम देता है। [7]
इंटेलिजेंट ऑटोपायलट सिस्टम अप्रेंटिसशिप लर्निंग और बिहेवियरल क्लोनिंग के सिद्धांतों को जोड़ता है, जिससे ऑटोपायलट उन कार्यों को लागू करने के लिए उपयोग किए जाने वाले हवाई जहाज और उच्च-स्तरीय रणनीति के लिए आवश्यक निम्न-स्तरीय क्रियाओं का अवलोकन करता है। [8] IAS कार्यान्वयन तीन चरणों को नियोजित करता है; पायलट डेटा संग्रह, प्रशिक्षण और स्वायत्त नियंत्रण। [8] बोमर और बेंटले का लक्ष्य आपातकालीन स्थितियों के जवाब में पायलटों की सहायता के लिए एक अधिक स्वायत्त ऑटोपायलट बनाना है। [8]
एआई शोधकर्ताओं ने कंप्यूटर विज्ञान में सबसे कठिन समस्याओं को हल करने के लिए कई उपकरण बनाए हैं। उनके कई आविष्कारों को मुख्यधारा के कंप्यूटर विज्ञान ने अपनाया है और उन्हें अब एआई का हिस्सा नहीं माना जाता है। ( एआई प्रभाव देखें ) Russell & Norvig (2003, p. 15) अनुसार Russell & Norvig (2003, p. 15) : निम्न में से सभी मूल रूप से ऐ प्रयोगशालाओं में विकसित किए गए समय साझा करने , इंटरैक्टिव दुभाषिए , ग्राफिकल यूजर इंटरफेस और कंप्यूटर माउस , तेजी से विकास के वातावरण, लिंक्ड सूची डेटा संरचना, स्वचालित भंडारण प्रबंधन , प्रतीकात्मक प्रोग्रामिंग , कार्यात्मक प्रोग्रामिंग , गतिशील प्रोग्रामिंग और ऑब्जेक्ट ओरिएंटेड प्रोग्रामिंग ।
AI का उपयोग संभावित रूप से अनाम बायनेरिज़ के डेवलपर को निर्धारित करने के लिए किया जा सकता है। अन्य AI बनाने के लिए AI का उपयोग किया जा सकता है। उदाहरण के लिए, नवंबर 2017 के आसपास, Google की ऑटोएमएल परियोजना ने नई तंत्रिका शुद्ध टोपोलॉजी को विकसित करने के लिए NASNet बनाया, जो इमेजनेट और सीओसीओ के लिए अनुकूलित प्रणाली है। Google के अनुसार, NASNet का प्रदर्शन सभी पहले प्रकाशित ImageNet प्रदर्शन से अधिक था। [9]
कक्षा में एआई का भविष्य
कक्षा में एआई[10] का भविष्य उज्ज्वल दिख रहा है। सबसे रोमांचक नवाचारों में से एक प्रत्येक व्यक्तिगत छात्र के लिए एक व्यक्तिगत एआई ट्यूटर या सहायक का विचार है। क्योंकि एक ही शिक्षक एक बार में प्रत्येक छात्र के साथ काम नहीं कर सकता है, एआई ट्यूटर छात्रों को आवश्यक विकास के क्षेत्रों में अतिरिक्त, एक-पर-एक सहायता प्राप्त करने की अनुमति देगा। [11] एआई ट्यूटर भी ट्यूटर लैब या मानव ट्यूटर्स के डराने वाले विचार को समाप्त करते हैं जो कुछ छात्रों के लिए चिंता और तनाव का कारण बन सकते हैं। [12] भविष्य की कक्षाओं में, परिवेश संबंधी सूचना विज्ञान एक लाभकारी भूमिका निभा सकते हैं। परिवेश संबंधी सूचना विज्ञान यह विचार है कि जानकारी पर्यावरण में हर जगह है और प्रौद्योगिकियां आपकी व्यक्तिगत प्राथमिकताओं में स्वचालित रूप से समायोजित हो जाती हैं। [13] जब छात्र अपने डेस्क पर बैठते हैं, तो उनके उपकरण विशिष्ट छात्र की जरूरतों के लिए, विशेष रूप से जहां एक छात्र संघर्ष कर रहे हों, और तत्काल प्रतिक्रिया दे सकते हैं, को सबक, समस्याएं और गेम बनाने में सक्षम होंगे। यह एक "एक आकार-फिट-सभी कक्षा" के विचार को समाप्त करता है क्योंकि अब हमें छात्रों को ठीक उसी गति से समान सामग्री सीखने के लिए मजबूर नहीं करना पड़ेगा। कक्षा में एआई के उपयोग के कई लाभ हैं, वहीं कई खतरे भी हैं जिन्हें लागू करने से पहले इस पर ध्यान देने की आवश्यकता है।
जहां तक शिक्षा में एआई के भविष्य की बात है, तो द न्यू यॉर्क टाइम्स द्वारा "द ग्रेट एआई अवेकनिंग" के रूप में गढ़ी गई कई नई संभावनाएं हैं। फोर्ब्स द्वारा उल्लिखित इन संभावनाओं में से एक में अनुकूली शिक्षण कार्यक्रम प्रदान करना शामिल है, जो किसी छात्र की भावनाओं और सीखने की प्राथमिकताओं का आकलन और प्रतिक्रिया करता है। एक और उन्नति में व्यक्तिगत आधार पर प्रदर्शन डेटा और संवर्धन विधियों की प्रस्तुति शामिल है। पाठ्यक्रम के भीतर, एआई यह निर्धारित करने में मदद कर सकता है कि क्या ग्रंथों और निर्देशों में अंतर्निहित पूर्वाग्रह हैं। शिक्षकों के लिए, एआई में जल्द ही एक, संभावित, वैश्विक डेटाबेस से अलग-अलग शिक्षण हस्तक्षेपों की प्रभावकारिता के बारे में डेटा रिले करने की शक्ति हो सकती है। संपूर्ण AI में जिला, राज्य, राष्ट्रीय और वैश्विक डेटा को ध्यान में रखते हुए शिक्षा को प्रभावित करने की शक्ति है क्योंकि यह सभी के लिए बेहतर व्यक्तिगत बनाना चाहता है। यद्यपि एआई एक कक्षा को कई संपत्ति प्रदान कर सकता है, फिर भी कई विशेषज्ञ इस बात से सहमत हैं कि वे शिक्षकों को पूरी तरह से बदलने में सक्षम नहीं होंगे।
कई शिक्षक एआई के विचार को कक्षा में उन्हें बदलने से डरते हैं, विशेष रूप से प्रत्येक छात्र के लिए व्यक्तिगत एआई सहायकों के विचार के साथ। वास्तविकता यह है कि, एआई बदला प्रभाव के साथ एक अधिक डायस्टोपियन वातावरण बना सकता है। इसका मतलब यह है कि प्रौद्योगिकी समाज को आगे बढ़ने से रोक रही है और समाज पर नकारात्मक, अनपेक्षित प्रभाव डालती है। [14] एक बदला प्रभाव का एक उदाहरण यह है कि प्रौद्योगिकी के विस्तारित उपयोग से छात्रों को सीखने और बढ़ने में मदद करने के बजाय कार्य पर ध्यान केंद्रित करने और रहने की क्षमता में बाधा पड़ सकती है। [15] इसके अलावा, एआई को मानव एजेंसी और एक साथ दोनों के नुकसान का नेतृत्व करने के लिए जाना जाता है। [13] यदि छात्र पूरी तरह से एल्गोरिदम और तारों से बने एआई ट्यूटर्स पर भरोसा कर रहे हैं, तो यह उनकी खुद की शिक्षा और सीखने को नियंत्रित करने की उनकी क्षमता को कम करता है। इसके अलावा, एआई प्रौद्योगिकियों की आवश्यकता एक साथ काम करने के लिए हो सकती है, जो कि पूरे स्कूल के दिन को बर्बाद कर सकती है, अगर हम एआई सहायकों पर भरोसा कर रहे हैं तो हर दिन छात्रों के लिए सबक बनाने के लिए। यह अपरिहार्य है कि आने वाले वर्षों में एआई प्रौद्योगिकियां कक्षा में ले जाएंगी, इस प्रकार यह आवश्यक है कि शिक्षकों द्वारा अपने दैनिक कार्यक्रम में उन्हें लागू करने या न करने का निर्णय लेने से पहले इन नए नवाचारों के लिए काम किया जाए।
एल्गोरिदमिक ट्रेडिंग में जटिल एआई सिस्टम का उपयोग शामिल है, जो किसी भी मानव की तुलना में अधिक परिमाण के कई आदेशों को गति देने के लिए व्यापारिक निर्णय लेते हैं, अक्सर किसी भी मानव हस्तक्षेप के बिना एक दिन में लाखों ट्रेड कर रहे हैं। इस तरह के ट्रेडिंग को हाई-फ़्रीक्वेंसी ट्रेडिंग कहा जाता है, और यह वित्तीय व्यापार में सबसे तेजी से बढ़ते क्षेत्रों में से एक का प्रतिनिधित्व करता है। कई बैंकों, फंडों और मालिकाना ट्रेडिंग फर्मों के पास अब पूरे पोर्टफोलियो हैं जो एआई सिस्टम द्वारा पूरी तरह से प्रबंधित किए जाते हैं। स्वचालित ट्रेडिंग सिस्टम आमतौर पर बड़े संस्थागत निवेशकों द्वारा उपयोग किया जाता है, लेकिन हाल के वर्षों में अपने स्वयं के एआई सिस्टम के साथ व्यापार करने वाले छोटे, मालिकाना फर्मों की आमद भी देखी गई है। [16]
कई बड़े वित्तीय संस्थानों ने अपने निवेश प्रथाओं के साथ सहायता के लिए एआई इंजनों में निवेश किया है। ब्लैकरॉक के एआई इंजन, अलादीन का उपयोग कंपनी के भीतर और ग्राहकों के लिए निवेश निर्णयों में मदद करने के लिए किया जाता है। कार्यात्मकताओं की इसकी विस्तृत श्रृंखला में समाचार पढ़ने के लिए प्राकृतिक भाषा प्रसंस्करण का उपयोग शामिल है जैसे समाचार, ब्रोकर रिपोर्ट और सोशल मीडिया फीड। यह तब उल्लेखित कंपनियों पर भावना का अनुमान लगाता है और एक अंक प्रदान करता है। यूबीएस और डॉयचे बैंक जैसे बैंक Sqreem (अनुक्रमिक क्वांटम रिडक्शन और एक्सट्रैक्शन मॉडल) नामक एक एआई इंजन का उपयोग करते हैं जो उपभोक्ता प्रोफाइल विकसित करने और उन्हें धन प्रबंधन उत्पादों के साथ मिलान करने के लिए डेटा की खान कर सकते हैं जो वे सबसे अधिक संभावना चाहते हैं। [17] गोल्डमैन सैक्स, किन्शो का उपयोग करता है, जो एक बाजार विश्लेषण मंच है जो बड़े डेटा और प्राकृतिक भाषा प्रसंस्करण के साथ सांख्यिकीय कंप्यूटिंग को जोड़ती है। इसकी मशीन लर्निंग सिस्टम वेब पर डेटा के होर्ड्स के माध्यम से और दुनिया की घटनाओं और संपत्ति की कीमतों पर उनके प्रभाव के बीच संबंध का आकलन करती है। [18] सूचना निष्कर्षण , कृत्रिम बुद्धिमत्ता का हिस्सा, का उपयोग लाइव न्यूज फीड से जानकारी निकालने और निवेश निर्णयों की सहायता के लिए किया जाता है। [19]
कई उत्पाद उभर रहे हैं जो अपने व्यक्तिगत वित्त के साथ लोगों की सहायता करने के लिए एआई का उपयोग करते हैं। उदाहरण के लिए, डिजिट एक ऐसा ऐप है जो आर्टिफिशियल इंटेलिजेंस द्वारा संचालित होता है जो स्वचालित रूप से उपभोक्ताओं को उनकी व्यक्तिगत आदतों और लक्ष्यों के आधार पर उनके खर्च और बचत को अनुकूलित करने में मदद करता है। ऐप मासिक आय, वर्तमान संतुलन और खर्च करने की आदतों जैसे कारकों का विश्लेषण कर सकता है, फिर अपने फैसले कर सकता है और बचत खाते में धन हस्तांतरित कर सकता है। [20] बटुआ। सैन फ्रांसिस्को में एक आगामी स्टार्टअप, एआई उन एजेंटों का निर्माण करता है, जो डेटा का विश्लेषण करते हैं, जो उपभोक्ता अपने खर्च व्यवहार के बारे में सूचित करने के लिए स्मार्टफ़ोन चेक-इन से लेकर ट्वीट तक को पीछे छोड़ देगा। [21]
निवेश प्रबंधन उद्योग में रोबो-सलाहकारों का व्यापक रूप से उपयोग किया जा रहा है। रोबो-सलाहकार न्यूनतम मानवीय हस्तक्षेप के साथ वित्तीय सलाह और पोर्टफोलियो प्रबंधन प्रदान करते हैं। वित्तीय सलाहकारों की यह श्रेणी ग्राहकों के निवेश लक्ष्यों और जोखिम सहिष्णुता के अनुसार स्वचालित रूप से वित्तीय पोर्टफोलियो विकसित करने के लिए बनाए गए एल्गोरिदम पर आधारित है। यह बाजार में वास्तविक समय के बदलावों को समायोजित कर सकता है और तदनुसार पोर्टफोलियो को कैलिब्रेट कर सकता है। [22]
एक ऑनलाइन ऋणदाता, अपस्टार्ट, बड़ी मात्रा में उपभोक्ता डेटा का विश्लेषण करता है और क्रेडिट जोखिम वाले मॉडल विकसित करने के लिए मशीन लर्निंग एल्गोरिदम का उपयोग करता है जो उपभोक्ता की डिफ़ॉल्ट की संभावना का अनुमान लगाता है। उनकी तकनीक को उनके अंडरराइटिंग प्रक्रियाओं के लिए लाभ उठाने के लिए बैंकों को लाइसेंस दिया जाएगा। [23]
ZestFinance ने अपने Zest Automated Machine Learning (ZAML) प्लेटफार्म को विशेष रूप से क्रेडिट अंडरराइटिंग के लिए भी विकसित किया। यह मंच उधारकर्ताओं को स्कोर करने के लिए क्रेडिट उद्योग में उपयोग किए जाने वाले हजारों पारंपरिक और nontraditional चर (खरीद लेनदेन से एक ग्राहक कैसे भरता है) के दसियों का विश्लेषण करने के लिए मशीन लर्निंग का उपयोग करता है। प्लेटफ़ॉर्म विशेष रूप से उन लोगों के लिए क्रेडिट स्कोर आवंटित करने के लिए उपयोगी है, जो सीमित क्रेडिट इतिहास के साथ मिलते हैं, जैसे कि मिलेनियल्स। [24]
1980 का दशक वास्तव में है जब एआई ने वित्त जगत में प्रमुख बनना शुरू किया। यह तब है जब विशेषज्ञ क्षेत्र वित्तीय क्षेत्र में एक वाणिज्यिक उत्पाद के अधिक हो गए। "उदाहरण के लिए, ड्यूपॉन्ट ने 100 विशेषज्ञ प्रणालियों का निर्माण किया था जिससे उन्हें एक वर्ष में $ 10 मिलियन की बचत करने में मदद मिली।" [25] पहली प्रणालियों में से एक केसी चेन और टिंग-पेंग लियान द्वारा डिज़ाइन किया गया प्रोट्रैडर विशेषज्ञ प्रणाली थी जो 1986 में डॉव जोन्स इंडस्ट्रियल एवरेज में 87-पॉइंट ड्रॉप की भविष्यवाणी करने में सक्षम थी। "सिस्टम के प्रमुख जंक्शन बाजार में प्रीमियम की निगरानी करने के लिए थे, इष्टतम निवेश रणनीति का निर्धारण करते हैं, जब उचित हो लेनदेन को निष्पादित करते हैं और एक ज्ञान तंत्र के माध्यम से ज्ञान आधार को संशोधित करते हैं।" [26] वित्तीय योजनाओं के साथ मदद करने वाले पहले विशेषज्ञ प्रणालियों में से एक एप्लाइड एक्सपर्ट सिस्टम (अपेक्स) द्वारा बनाया गया था जिसे प्लानपावर कहा जाता है। यह पहली बार व्यावसायिक रूप से 1986 में शिप किया गया था। इसका कार्य $ 75,000 प्रति वर्ष से अधिक आय वाले लोगों के लिए वित्तीय योजनाओं को देने में मदद करना था। इसके बाद क्लाइंट प्रोफाइलिंग सिस्टम का उपयोग किया गया, जिसका उपयोग प्रति वर्ष $ 25,000 और $ 200,000 के बीच आय के लिए किया जाता था। [27] 1990 के दशक में धोखाधड़ी का पता लगाने के बारे में बहुत कुछ था। 1993 में शुरू की गई प्रणालियों में से एक FinCEN आर्टिफिशियल इंटेलिजेंस सिस्टम (FAIS) थी। यह प्रति सप्ताह 200,000 से अधिक लेनदेन की समीक्षा करने में सक्षम था और दो वर्षों में इसने मनी लॉन्ड्रिंग के 400 संभावित मामलों की पहचान करने में मदद की जो $ 1 बिलियन के बराबर होगी। [28] हालांकि विशेषज्ञ सिस्टम वित्त जगत में नहीं टिके, लेकिन इसने एआई के इस्तेमाल को शुरू करने में मदद की और इसे आज जो है, उसे बनाने में मदद की।
कई उद्योगों में रोबोट आम हो गए हैं और अक्सर उन्हें ऐसे काम दिए जाते हैं जो मनुष्यों के लिए खतरनाक माने जाते हैं। रोबोट नौकरियों में प्रभावी साबित हुए हैं जो बहुत दोहरावदार हैं जो एकाग्रता और अन्य नौकरियों में चूक के कारण गलतियों या दुर्घटनाओं का कारण बन सकते हैं जो मानव अपमानजनक लग सकता है।
2014 में, चीन , जापान , संयुक्त राज्य अमेरिका , कोरिया गणराज्य और जर्मनी ने मिलकर रोबोट की कुल बिक्री मात्रा का 70% हिस्सा लिया। ऑटोमोटिव उद्योग में , विशेष रूप से उच्च स्तर के स्वचालन के साथ, जापान में दुनिया में औद्योगिक रोबोटों का उच्चतम घनत्व था: 1,414 प्रति 10,000 कर्मचारी। [29]
कृत्रिम तंत्रिका नेटवर्क का उपयोग चिकित्सीय निदान के लिए नैदानिक निर्णय समर्थन प्रणाली के रूप में किया जाता है, जैसे कि EMR सॉफ़्टवेयर में कॉन्सेप्ट प्रोसेसिंग तकनीक।
चिकित्सा में अन्य कार्य जो संभावित रूप से कृत्रिम बुद्धिमत्ता द्वारा किए जा सकते हैं और विकसित किए जाने की शुरुआत में शामिल हैं:
इन क्षेत्रों में काम करने वाले स्वास्थ्य उद्योग में 90 से अधिक एआई स्टार्टअप हैं। [34]
आईडीएक्स का पहला समाधान, आईडीएक्स-डीआर, एफडीए द्वारा व्यावसायीकरण के लिए अधिकृत पहला स्वायत्त एआई-आधारित नैदानिक प्रणाली है। [35]
एआई का एक अन्य अनुप्रयोग मानव संसाधन और भर्ती स्थान पर है। एआई के तीन तरीके मानव संसाधन और पेशेवरों की भर्ती के लिए उपयोग किए जा रहे हैं: नौकरी के मिलान प्लेटफार्मों के माध्यम से दी गई भूमिकाओं में उम्मीदवार की सफलता की भविष्यवाणी करने के लिए, और अपनी योग्यता के स्तर के अनुसार उम्मीदवारों को फिर से शुरू करने और रैंक करने के लिए, और अब स्वचालित बॉट्स की भर्ती कर सकते हैं जो स्वचालित कर सकते हैं दोहराए जाने वाले संचार कार्य।
आमतौर पर, रिज्यूमे स्क्रीनिंग में रिज्यूमे के डेटाबेस के माध्यम से एक भर्ती या अन्य एचआर पेशेवर स्कैनिंग शामिल होती है। अब पोमाटो जैसे स्टार्टअप, स्क्रीनिंग प्रक्रियाओं को फिर से शुरू करने के लिए मशीन लर्निंग एल्गोरिदम बना रहे हैं। पोमैटो का फिर से शुरू स्क्रीनिंग एआई तकनीकी स्टाफिंग फर्मों के लिए तकनीकी आवेदकों को मान्य करने पर ध्यान केंद्रित करता है। पोमाटो के एआई सेकंड में फिर से शुरू होने पर 200,000 से अधिक संगणना करता है और फिर खनन कौशल के आधार पर एक कस्टम तकनीकी साक्षात्कार तैयार करता है। केई समाधान, 2014 में स्थापित, ने उम्मीदवारों के लिए नौकरियों को रैंक करने और नियोक्ताओं के लिए रैंक फिर से शुरू करने के लिए सिफारिश प्रणाली विकसित की है। केई सॉल्यूशंस द्वारा विकसित jobster.io, अवधारणा आधारित खोज का उपयोग करता है जिसने पारंपरिक एटीएस की तुलना में सटीकता में 80% की वृद्धि की है। यह भर्तीकर्ताओं को तकनीकी बाधाओं को दूर करने में मदद करता है।
2016 से 2017 तक, उपभोक्ता सामान बनाने वाली कंपनी यूनिलीवर ने सभी एंट्री-लेवल कर्मचारियों की स्क्रीनिंग के लिए कृत्रिम बुद्धिमत्ता का उपयोग किया। यूनिलीवर के एआई ने कामयाबी की भविष्यवाणी करने के लिए न्यूरोसाइंस-आधारित गेम, रिकॉर्ड किए गए साक्षात्कार और चेहरे और भाषण विश्लेषण का इस्तेमाल किया। यूनिलीवर ने एआई-आधारित स्क्रीनिंग को सक्षम करने के लिए पाइमेट्रिक्स और हायरव्यू के साथ भागीदारी की और अपने आवेदकों को एक ही वर्ष में 15,000 से 30,000 तक बढ़ा दिया। AI के साथ भर्ती होने से यूनिलीवर का "आज तक का सबसे विविध वर्ग" पैदा हुआ। यूनिलीवर ने भी 4 महीने से चार सप्ताह तक का समय कम कर दिया और 50,000 घंटे से अधिक भर्ती समय बचाया।
फिर से शुरू स्क्रीनिंग से तंत्रिका विज्ञान, भाषण मान्यता, और चेहरे के विश्लेषण के लिए, एआई मानव संसाधन क्षेत्र पर बड़े पैमाने पर प्रभाव डाल रहा है। फिर भी AI में एक और विकास चैटबॉट की भर्ती में है। TextRecruit , एक बे एरिया स्टार्टअप, ने अरी (स्वचालित भर्ती इंटरफ़ेस) जारी किया। ) अरी एक भर्ती चैटबॉट है जो उम्मीदवारों के साथ दो-तरफा पाठ संदेश वार्तालापों को रखने के लिए डिज़ाइन किया गया है। अरी पोस्टिंग नौकरियों, विज्ञापन के उद्घाटन, उम्मीदवारों की स्क्रीनिंग, साक्षात्कारों को शेड्यूल करना, और उम्मीदवारों के संबंधों को अपडेट करने के साथ-साथ हायरिंग फ़नल के साथ आगे बढ़ते हैं। अरी वर्तमान में TextRecruit के उम्मीदवार सगाई मंच के हिस्से के रूप में पेश किया गया है।
कृत्रिम बुद्धिमत्ता कार्यान्वयन के कारण जॉब मार्केट में उल्लेखनीय बदलाव देखा गया है। इसने नियोक्ताओं और नौकरी चाहने वालों (यानी, नौकरियों के लिए Google और ऑनलाइन आवेदन) दोनों के लिए प्रक्रिया को सरल बनाया है। Fact.com से राज मुखर्जी के अनुसार, काम पर रखने के 91 दिनों के भीतर 65% लोग फिर से नौकरी की तलाश शुरू करते हैं। एआई-संचालित इंजन नौकरी कौशल, वेतन, और उपयोगकर्ता की प्रवृत्ति के बारे में जानकारी संचालित करके नौकरी की जटिलता को सुव्यवस्थित करता है, लोगों को सबसे अधिक प्रासंगिक पदों से मेल खाता है। मशीन इंटेलिजेंस इस बात की गणना करता है कि किसी विशेष कार्य के लिए क्या मजदूरी उचित होगी, प्राकृतिक भाषा प्रसंस्करण का उपयोग कर भर्ती करने वालों के लिए फिर से शुरू की गई जानकारी को खींचता है और हाइलाइट करता है, जो विशेष सॉफ्टवेयर का उपयोग करके पाठ से प्रासंगिक शब्दों और वाक्यांशों को निकालता है। एक अन्य एप्लिकेशन एक एआई रेज्यूमे बिल्डर है जिसे सीवी संकलित करने के लिए 5 मिनट की आवश्यकता होती है क्योंकि वही काम करने में घंटों खर्च करने का विरोध करता है। AI उम्र में चैटबॉट वेबसाइट आगंतुकों की सहायता करते हैं और दैनिक वर्कफ़्लो को हल करते हैं। क्रांतिकारी एआई उपकरण लोगों के कौशल के पूरक हैं और मानव संसाधन प्रबंधकों को उच्च प्राथमिकता के कार्यों पर ध्यान केंद्रित करने की अनुमति देते हैं। हालांकि, नौकरियों के शोध पर आर्टिफिशियल इंटेलिजेंस प्रभाव बताता है कि 2030 तक बुद्धिमान एजेंट और रोबोट दुनिया के मानव श्रम के 30% को खत्म कर सकते हैं। इसके अलावा, अनुसंधान साबित करता है कि स्वचालन 400 और 800 मिलियन कर्मचारियों के बीच विस्थापित होगा। Glassdoor की शोध रिपोर्ट में कहा गया है कि भर्ती और एचआर को नौकरी बाजार 2018 और उससे आगे एआई के व्यापक प्रसार को देखने की उम्मीद है। [36] [37]
कुछ एआई एप्लिकेशन को ऑडियविज़ुअल मीडिया कंटेंट जैसे फिल्मों, टीवी कार्यक्रमों, विज्ञापन वीडियो या उपयोगकर्ता-जनित सामग्री के विश्लेषण के लिए तैयार किया जाता है । समाधान में अक्सर कंप्यूटर दृष्टि शामिल होती है , जो एआई का एक प्रमुख अनुप्रयोग क्षेत्र है।
विशिष्ट उपयोग के मामलों के परिदृश्य में ऑब्जेक्ट मान्यता या फेस रिकग्निशन तकनीकों का उपयोग करके छवियों का विश्लेषण, या प्रासंगिक दृश्यों, वस्तुओं या चेहरे को पहचानने के लिए वीडियो का विश्लेषण शामिल है । AI- आधारित मीडिया विश्लेषण का उपयोग करने की प्रेरणा अन्य चीजों में हो सकती है - मीडिया खोज की सुविधा, मीडिया आइटम के लिए वर्णनात्मक कीवर्ड के सेट का निर्माण, मीडिया सामग्री नीति निगरानी (जैसे किसी विशेष के लिए सामग्री की उपयुक्तता की पुष्टि करना) टीवी देखने का समय), अभिलेखीय या अन्य उद्देश्यों के लिए पाठ के लिए भाषण , और प्रासंगिक विज्ञापनों के प्लेसमेंट के लिए लोगो, उत्पादों या सेलिब्रिटी चेहरों का पता लगाना।
मीडिया विश्लेषण एआई कंपनियां अक्सर एक REST एपीआई पर अपनी सेवाएं प्रदान करती हैं जो मशीन-आधारित स्वचालित तकनीक को सक्षम बनाता है और परिणामों के मशीन-रीडिंग की अनुमति देता है। उदाहरण के लिए, IBM , Microsoft , Amazon और वीडियो AI कंपनी Valossa [38] RESTO APIs का उपयोग करके अपनी मीडिया मान्यता प्रौद्योगिकी तक पहुँच की अनुमति देते हैं।
विजुअल सर्च , विज़ुअली समान सिफारिश , चैटबॉट्स , ऑटोमेटेड प्रोडक्ट टैगिंग आदि जैसे अनुप्रयोगों के लिए ई-कॉमर्स उद्योग में एआई का व्यापक रूप से उपयोग किया जाता है। एक और सामान्य अनुप्रयोग खोज की खोज क्षमता को बढ़ाना और सोशल मीडिया सामग्री को उचित बनाना है ।
जबकि संगीत का विकास हमेशा तकनीक से प्रभावित रहा है, कृत्रिम बुद्धि ने वैज्ञानिक प्रगति के माध्यम से, कुछ हद तक, मानव जैसी रचना को सक्षम किया है।
उल्लेखनीय शुरुआती प्रयासों के बीच, डेविड कोप ने एमिली हॉवेल नामक एक एआई बनाया, जो अल्गोरिथमिक कंप्यूटर संगीत के क्षेत्र में अच्छी तरह से जाना जाता है। [39] एमिली हॉवेल के पीछे एल्गोरिथ्म एक अमेरिकी पेटेंट के रूप में पंजीकृत है। [40]
AI Iamus ने 2012 में एक कंप्यूटर द्वारा पूरी तरह से तैयार किया गया पहला पूर्ण शास्त्रीय एल्बम बनाया।
AIVA (आर्टिफिशियल इंटेलिजेंस वर्चुअल आर्टिस्ट) जैसे अन्य प्रयास, सिम्फोनिक संगीत, मुख्य रूप से फिल्म के स्कोर के लिए शास्त्रीय संगीत पर ध्यान केंद्रित करते हैं । [41] इसने संगीत पेशेवर संगठन द्वारा पहचाने जाने वाले पहले आभासी संगीतकार बनकर दुनिया में पहला स्थान हासिल किया। [42]
आर्टिफिशियल इंटेलिजेंस भी मेडिकल सेटिंग में संगीत को उपयोगी बना सकती है, जिसमें तनाव और दर्द से राहत के लिए कंप्यूटर-जनरेट किए गए संगीत का उपयोग करने का मेलमिक्स का प्रयास है। [43]
इसके अलावा, Google मस्तिष्क टीम द्वारा संचालित Google मैजेंटा जैसी पहल यह पता लगाना चाहती है कि क्या कोई कृत्रिम बुद्धिमत्ता सम्मोहक कला बनाने में सक्षम हो सकती है। [44]
सोनी CSL रिसर्च लेबोरेटरी में, उनके फ़्लो मशीन सॉफ्टवेयर ने गानों के विशाल डेटाबेस से संगीत शैली सीखकर पॉप गाने तैयार किए हैं। शैलियों के अद्वितीय संयोजनों का विश्लेषण करके और तकनीकों का अनुकूलन करके, यह किसी भी शैली में रचना कर सकता है।
एक अन्य कृत्रिम बुद्धिमत्ता संगीत रचना परियोजना, द वॉटसन बीट , जो आईबीएम रिसर्च द्वारा लिखी गई है, को Google मैजेंटा और फ्लो मशीन परियोजनाओं जैसे संगीत के विशाल डेटाबेस की आवश्यकता नहीं है, क्योंकि यह एक सरल बीज पर संगीत की रचना करने के लिए सुदृढीकरण सीखने और गहरी विश्वास नेटवर्क का उपयोग करता है। इनपुट राग और एक चुनिंदा शैली। चूंकि सॉफ्टवेयर को खुला रखा गया है [45] संगीतकार, जैसे कि टेरिन सदर्न [46] संगीत बनाने की परियोजना में सहयोग कर रहे हैं।
कंपनी नैरेटिव साइंस कंप्यूटर-जनित समाचार और रिपोर्ट व्यावसायिक रूप से उपलब्ध कराती है, जिसमें अंग्रेजी में खेल से सांख्यिकीय आंकड़ों के आधार पर टीम खेल की घटनाओं को संक्षेप में प्रस्तुत करना शामिल है। यह वित्तीय रिपोर्ट और रियल एस्टेट विश्लेषण भी बनाता है। [47] इसी तरह, कंपनी ऑटोमेटेड इनसाइट्स याहू स्पोर्ट्स फैंटेसी फुटबॉल के लिए व्यक्तिगत रिकैप्स और प्रीव्यू तैयार करती है। [48] कंपनी को 2014 में एक बिलियन कहानियां बनाने का अनुमान है, जो 2013 में 350 मिलियन से अधिक थी। [49]
Echobox एक सॉफ्टवेयर कंपनी है, जो प्रकाशकों को फेसबुक और ट्विटर जैसे सोशल मीडिया प्लेटफॉर्म पर लेखों को 'बुद्धिमानी से' पोस्ट करके ट्रैफ़िक बढ़ाने में मदद करती है। [50] बड़ी मात्रा में डेटा का विश्लेषण करके, यह सीखता है कि दिन के अलग-अलग समय में विशिष्ट ऑडियंस विभिन्न लेखों का जवाब कैसे देते हैं। यह तब पोस्ट करने के लिए सबसे अच्छी कहानियों और उन्हें पोस्ट करने के लिए सबसे अच्छा समय चुनता है। यह ऐतिहासिक और वास्तविक समय के डेटा दोनों का उपयोग करता है यह समझने के लिए कि अतीत में क्या अच्छा काम किया है और साथ ही वर्तमान में वेब पर क्या चल रहा है। [51]
एक अन्य कंपनी, जिसे यसोप कहा जाता है, संरचित डेटा को बुद्धिमान टिप्पणियों और प्राकृतिक भाषा में सिफारिशों को चालू करने के लिए कृत्रिम बुद्धिमत्ता का उपयोग करती है। Yseop वित्तीय रिपोर्ट, कार्यकारी सारांश, व्यक्तिगत बिक्री या विपणन दस्तावेज़ और प्रति सेकंड हजारों पृष्ठों की गति और अंग्रेजी, स्पेनिश, फ्रेंच और जर्मन सहित कई भाषाओं में लिखने में सक्षम है। [52]
Boomtrain's AI का एक और उदाहरण है जो यह जानने के लिए डिज़ाइन किया गया है कि प्रत्येक व्यक्ति को सटीक लेखों के साथ सर्वोत्तम तरीके से कैसे संलग्न किया जाए - सही समय पर सही चैनल के माध्यम से भेजा जाए - जो पाठक के लिए सबसे अधिक प्रासंगिक होगा। यह प्रत्येक व्यक्तिगत पाठक के लिए एक व्यक्तिगत संपादक को काम पर रखने के लिए है, जो कि सही रीडिंग अनुभव को क्यूरेट करता है।
आँख की पुतली। टीवी अपने AI- पावर्ड वीडियो पर्सनलाइजेशन और प्रोग्रामिंग प्लेटफॉर्म के साथ मीडिया कंपनियों की मदद कर रहा है। यह प्रकाशकों और सामग्री स्वामियों को उपभोक्ता के देखने के पैटर्न के आधार पर दर्शकों के लिए प्रासंगिक रूप से प्रासंगिक सामग्री की अनुमति देता है। [53]
डेटा इनपुट दिए गए लेखन कार्यों के स्वचालन के अलावा, एआई ने कंप्यूटरों को उच्च-स्तरीय रचनात्मक कार्यों में संलग्न होने की महत्वपूर्ण क्षमता दिखाई है। एआई स्टोरीटेलिंग अनुसंधान का एक सक्रिय क्षेत्र रहा है क्योंकि जेम्स मेहान ने TALESPIN का विकास किया, जिसने ईसप की दंतकथाओं के समान कहानियां बनाईं। यह कार्यक्रम उन पात्रों के समूह के साथ शुरू होगा जो कुछ लक्ष्यों को प्राप्त करना चाहते थे, कहानी के साथ इन लक्ष्यों को पूरा करने की योजनाओं के क्रियान्वयन के प्रयासों के वर्णन के रूप में। [54] मीहान के बाद से, अन्य शोधकर्ताओं ने एआई स्टोरीटेलिंग पर समान या अलग-अलग तरीकों का उपयोग करके काम किया है। मार्क रिडेल और वादिम बुलिट्को ने तर्क दिया कि कहानी कहने का सार एक अनुभव प्रबंधन समस्या थी, या "उपयोगकर्ता एजेंसी के साथ सुसंगत कहानी प्रगति की आवश्यकता को कैसे संतुलित किया जाए, जो अक्सर बाधाओं पर होता है।" [55]
जबकि एआई कहानी पर अधिकांश शोध कहानी पीढ़ी (जैसे चरित्र और कथानक) पर केंद्रित है, कहानी संचार में भी महत्वपूर्ण जांच हुई है। 2002 में, नॉर्थ कैरोलिना स्टेट यूनिवर्सिटी के शोधकर्ताओं ने कथा गद्य पीढ़ी के लिए एक वास्तुशिल्प ढांचा विकसित किया। उनका विशेष रूप से कार्यान्वयन, पाठ की विविधता और लाल कहानियों के साथ कई कहानियों की जटिलता को पुन: प्रस्तुत करने में सक्षम था, जैसे कि लाल सवारी वाला हुड, जैसे मानव साक्षी। [56] यह विशेष क्षेत्र ब्याज प्राप्त करना जारी रखता है। 2016 में, एक जापानी एआई ने एक लघु कहानी लिखी और लगभग एक साहित्यिक पुरस्कार जीता। [57]
आर्टिफिशियल इंटेलिजेंस स्वचालित ऑनलाइन सहायकों में लागू किया जाता है जिन्हें वेब पेजों पर अवतार के रूप में देखा जा सकता है। [58] यह उद्यमों के लिए उनके संचालन और प्रशिक्षण लागत को कम करने के लिए लाभ उठा सकता है। [58] ऐसी प्रणालियों के लिए एक प्रमुख अंतर्निहित तकनीक प्राकृतिक भाषा प्रसंस्करण है । [58] Pypestream ग्राहकों के साथ संचार को कारगर बनाने के लिए डिज़ाइन किए गए अपने मोबाइल एप्लिकेशन के लिए स्वचालित ग्राहक सेवा का उपयोग करता है। [59]
भविष्य में मुश्किल ग्राहकों को संभालने के लिए प्रमुख कंपनियां एआई में निवेश कर रही हैं। Google का सबसे हालिया विकास भाषा का विश्लेषण करता है और भाषण को पाठ में परिवर्तित करता है। मंच अपनी भाषा के माध्यम से नाराज ग्राहकों की पहचान कर सकता है और उचित प्रतिक्रिया दे सकता है। [60]
पावर इलेक्ट्रॉनिक्स कन्वर्टर्स विद्युत ग्रिड के भीतर नवीकरणीय ऊर्जा , ऊर्जा भंडारण , इलेक्ट्रिक वाहन और उच्च वोल्टेज प्रत्यक्ष वर्तमान ट्रांसमिशन सिस्टम के लिए एक सक्षम तकनीक है। इन कन्वर्टर्स में विफलताओं का खतरा होता है और इस तरह की विफलताओं से डाउनटाइम्स हो सकते हैं जिनके लिए महंगा रखरखाव की आवश्यकता हो सकती है या यहां तक कि मिशन महत्वपूर्ण अनुप्रयोगों में भयावह परिणाम हो सकते हैं। शोधकर्ता विश्वसनीय डिज़ाइन इलेक्ट्रॉनिक्स कन्वर्टर्स के लिए स्वचालित डिज़ाइन प्रक्रिया को करने के लिए AI का उपयोग कर रहे हैं, सटीक डिज़ाइन मापदंडों की गणना करके जो निर्दिष्ट मिशन प्रोफाइल के तहत कनवर्टर के वांछित जीवनकाल को सुनिश्चित करते हैं। [61]
आर्टिफिशियल इंटेलिजेंस को कई सेंसर प्रौद्योगिकियों के साथ जोड़ा गया है, जैसे आइडियाकुरिया इंक द्वारा डिजिटल स्पेक्ट्रोमेट्री टीएम [62] [63] जो कई अनुप्रयोगों को सक्षम करता है जैसे कि घर के पानी की गुणवत्ता की निगरानी।
कई दूरसंचार कंपनियां अपने कार्यबल के प्रबंधन में हेयुरिस्टिक खोज का उपयोग करती हैं, उदाहरण के लिए बीटी समूह ने एक शेड्यूलिंग एप्लिकेशन में हेयुरिस्टिक खोज [64] को तैनात किया है जो 20,000 इंजीनियरों के कार्य शेड्यूल प्रदान करता है।
1990 के दशक में शिक्षा, या अवकाश के लिए बुनियादी कृत्रिम बुद्धिमत्ता के घरेलू स्तर पर लक्षित बड़े पैमाने पर उत्पादन के पहले प्रयासों में से कुछ को देखा। यह डिजिटल क्रांति के साथ बहुत समृद्ध हुआ, और लोगों को, विशेषकर बच्चों को, विभिन्न प्रकार के कृत्रिम बुद्धिमत्ता से निपटने के जीवन से परिचित कराने में मदद की, विशेष रूप से तमागोचिस और गीगा पेट्स , आईपॉड टच , इंटरनेट और पहले व्यापक रूप से रोबोट , फरबरी । महज एक साल बाद एक बेहतर प्रकार का घरेलू रोबोट Aibo के रूप में जारी किया गया था, जो बुद्धिमान विशेषताओं और स्वायत्तता के साथ एक रोबोट कुत्ता था।
मैटल जैसी कंपनियां तीन साल से कम उम्र के बच्चों के लिए एआई-सक्षम खिलौने का वर्गीकरण तैयार कर रही हैं। मालिकाना एआई इंजन और भाषण मान्यता उपकरणों का उपयोग करते हुए, वे बातचीत को समझने, बुद्धिमान प्रतिक्रिया देने और जल्दी से सीखने में सक्षम हैं। [65]
एआई को वीडियो गेम पर भी लागू किया गया है , उदाहरण के लिए वीडियो गेम बॉट , जो विरोधियों के रूप में खड़े होने के लिए डिज़ाइन किए गए हैं जहां मानव उपलब्ध या वांछित नहीं हैं।
ऑटोमोबाइल में ऑटोमैटिक गियरबॉक्स के लिए फज़ी लॉजिक कंट्रोलर विकसित किए गए हैं। उदाहरण के लिए, 2006 ऑडी टीटी , वीडब्ल्यू टूरेग [उद्धरण चाहिए] और वीडब्ल्यू कारवेल में डीएसपी ट्रांसमिशन की सुविधा है जो फ़ज़ी लॉजिक का उपयोग करता है। कई स्कोडा वेरिएंट ( स्कोडा फैबिया ) में वर्तमान में एक फजी लॉजिक-आधारित नियंत्रक भी शामिल है।
आज की कारों में अब AI- आधारित ड्राइवर असिस्ट फीचर्स जैसे सेल्फ-पार्किंग और एडवांस क्रूज़ कंट्रोल हैं। एआई का उपयोग यातायात प्रबंधन अनुप्रयोगों को अनुकूलित करने के लिए किया गया है, जो बदले में प्रतीक्षा समय, ऊर्जा उपयोग और उत्सर्जन को 25 प्रतिशत से कम करता है। [1] भविष्य में, पूरी तरह से स्वायत्त कारों को विकसित किया जाएगा। परिवहन में AI पर्यावरण और समुदायों पर प्रभाव को कम करते हुए सुरक्षित, कुशल और विश्वसनीय परिवहन प्रदान करने की उम्मीद है। इस एआई को विकसित करने के लिए बड़ी चुनौती यह है कि परिवहन प्रणाली स्वाभाविक रूप से जटिल प्रणाली है जिसमें बहुत बड़ी संख्या में घटक और विभिन्न पार्टियां होती हैं, जिनमें से प्रत्येक में अलग और अक्सर परस्पर विरोधी उद्देश्य होते हैं। [66] । परिवहन की जटिलता और विशेष रूप से मोटर वाहन, आवेदन की इस उच्च डिग्री के कारण, यह ज्यादातर मामलों में एक वास्तविक दुनिया ड्राइविंग वातावरण में एआई एल्गोरिथ्म को प्रशिक्षित करना संभव नहीं है। आभासी विकास सम्मान के आधार पर स्वचालित ड्राइविंग के लिए तंत्रिका नेटवर्क के प्रशिक्षण की चुनौती को दूर करने के लिए। टूलचिन्स का परीक्षण [67] प्रस्तावित किया गया है।
विकिपीडिया से संबंधित अध्ययन विभिन्न कार्यों के समर्थन के लिए कृत्रिम बुद्धि का उपयोग कर रहे हैं। सबसे महत्वपूर्ण क्षेत्रों में से एक - बर्बरता का स्वत: पता लगाने [68] [69] और विकिपीडिया [70] [71] में डेटा की गुणवत्ता का आकलन।
विकिमीडिया फाउंडेशन की टीम ने एक मॉडल जारी किया जो बर्बरता, स्पैम और व्यक्तिगत हमले का पता लगाने के लिए बनाया गया है। [72] यह मॉडल छात्रों को बेहतर विकिपीडिया लेख लिखने में भी मदद कर सकता है। [73]