Jelölje a -adik háromszögű négyzetszámot, és pedig a hozzá tartozó négyzet és háromszög oldalait, így adódik:
.
Legyen egy háromszögszám háromszöggyöke. A definícióból és a kvadratikus formulából adódóan . Ezért akkor és csak akkor háromszögszám, ha négyzetszám, és természetesen akkor és csak akkor négyzetszám és háromszögszám egyben, ha négyzetszám, tehát ha léteznek olyan és egész számok, melyekre . Ez a Pell-egyenlet egyik példája, ahol . Minden Pell-egyenletnek van egy triviális megoldása (1,0), ezt a nulladik megoldásnak nevezik, és indexe . Ha jelöli adott -re nézve bármely Pell-egyenlet k-adik nemtriviális megoldását, akkor a végtelen leszállás módszerével megmutatható, hogy és . Ezért bármely Pell-egyenletnek, aminek létezik nem triviális megoldása (ha n nem négyzetszám), végtelen sok megoldása létezik. Az első nem triviális megoldás -ra könnyen megtalálható: (3,1). Az megoldás az Pell-egyenletre a következő módon ad meg egy háromszögű négyzetszámot annak négyzet- és háromszöggyökével: és . Így tehát az első háromszögű négyzetszám, ami a (3,1)-ből adódik az 1, a következő, ami a (17,6) (=6×(3,1)-(1,0))-ból adódik, a 36.
A háromszögű négyzetszámok keresése a következő módon redukálható a Pell-egyenlet megoldására.[3] Minden háromszögszám felírható t(t + 1)/2 alakban. Ezért olyan t és s egész számokat keresünk, melyekre
Minden háromszögű négyzetszám felírható alakban, ahol konvergál négyzetgyök 2lánctört-alakjához.[6]
A. V. Sylwester rövid bizonyítása arra nézve, hogy végtelen sok háromszögű négyzetszám létezik:[7]
Ha az háromszögszám négyzetszám, akkor a nagyobb
háromszögszám is négyzetszám.
Azért tudjuk ezt, mert három négyzetszám szorzataként áll elő: (a kitevő alapján), (az -edik háromszögszám, a kiindulási feltétel alapján) és (a kitevő alapján). Négyzetszámok szorzata minden esetben négyzetszám lesz. Ez onnan is tudható, hogy a teljes négyzetnek levés szükséges és elégséges feltétele, hogy páros hatványon szerepeljenek a prímtényezők a prímtényezős felbontásban, és ez a tulajdonság két négyzetszám összeszorzásánál megmarad.
A háromszöggyökök váltakozva eggyel kisebbek egy négyzetszámnál és kétszeresei egy négyzetszámnak (páros k értékekre), illetve négyzetszámok és eggyel kisebbek egy négyzetszám kétszeresénél (páratlan k értékekre). Tehát, és . Mindegyik esetben a két négyzetgyök összeszorzása a következőt adja: és .
és . Más szavakkal, két egymást követő háromszögű négyzetszám különbsége egy harmadik háromszögű négyzetszám négyzetgyökével egyezik meg.
A háromszögű négyzetszámokat előállítő függvény:[8]
Ahogy értéke egyre nő, a arány egyre jobban megközelíti a -t, az egymást követő háromszögű négyzetszámok aránya pedig -t. Az alábbi táblázat bemutatja értékeit 0 és 7 között.
↑Plouffe, Simon: 1031 Generating Functions (PDF). University of Quebec, Laboratoire de combinatoire et d'informatique mathématique, 1992. augusztus 1. [2013. február 6-i dátummal az eredetiből archiválva]. (Hozzáférés: 2009. május 11.)