A pitagoraszi prímek 4n + 1 alakban felírható prímszámok. Ezek pontosan azok a páratlan prímek, melyek felírhatók két négyzetszám összegeként.
Ezzel ekvivalens megfogalmazás, hogy a Pitagorasz-tétel alapján olyan p prímszámokról van szó, melyekre √p
egész befogójú derékszögű háromszög átfogójának hossza, valamint olyan p prímszámok, melyeknél p maga is pitagoraszi háromszög átfogója. Például az 5 pitagoraszi prím, √5 az 1 és 2 befogójú derékszögű háromszög átfogója, 5 pedig a 3 és 4 befogójúé.
Az első néhány pitagoraszi prímszám:
A számtani sorozatokra vonatkozó Dirichlet-tétel alapján ez a sorozat végtelen sok elemet tartalmaz. Ennél erősebb állítás, hogy bármely n természetes számra a pitagoraszi és nem pitagoraszi prímek száma nagyjából megegyezik. A tapasztalatok alapján azonban a pitagoraszi prímek száma általában valamivel kisebb a nem pitagorasziaknál, ezt a jelenséget Csebisev-torzításnak nevezik.[1] Például a 600 000-nél kisebb n értékek közül csak 26 861-re és 26 862-re igaz, hogy több nála kisebb páratlan pitagoraszi prím létezik, mint nem pitagoraszi.[2]
Egy páratlan és egy páros szám négyzetének összege mindig kongruens 1 mod 4, de léteznek olyan összetett számok – ilyen például a 21 –, melyek ≡1 mod 4 és mégsem fejezhetők ki két négyzetszám összegeként. A kétnégyzetszám-tétel kimondja, hogy a két négyzetszám összegeként kifejezhető prímszámok egész pontosan a 2 és azok a páratlan prímek, melyek ≡1 mod 4.[3] Az ilyen számok négyzetszámösszegként való kifejezése egyedi, a két négyzetszám sorba rendezésének erejéig.[4]
A Pitagorasz-tétel segítségével ez a felírás geometriailag is értelmezhető: a pitagoraszi prímek éppen azok a páratlan p prímszámok, melyekhez létezik egész oldalú befogókkal rendelkező derékszögű háromszög, melynek átfogója √p . Ezek éppen azok a p prímszámok, melyekhez létezik egész oldalhosszúságú derékszögű háromszög, melynek átfogója p hosszúságú. Hiszen ha az x és y a befogó, √p
az átfogó (feltehetjük, hogy x > y), akkor az x2 − y2 és 2xy befogókkal rendelkező derékszögű háromszög átfogója éppen p.[5]
A négyzetösszeg szemléletes megértésének másik módja a Gauss-egészeket hívja segítségül; ezek olyan komplex számok, melyek valós és imaginárius része is egész szám.[6] Az x + yi Gauss-egész normája x2 + y2. Így a pitagoraszi prímek (és a 2) Gauss-egészek normáiként jelentkeznek, míg a többi prím nem. A Gauss-egészek körében a pitagoraszi prímek nem prímszámok, mivel felbonthatók:
Hasonló módon a négyzetük is felbontható, a prímtényezős felbontástól eltérő módon:
A felbontásban szereplő tényezők valós és imaginárius részei az adott derékszögű háromszögek befogói hosszának felelnek meg.
A kvadratikus reciprocitás tétele alapján ha p és q különböző páratlan prímek, melyek közül legalább az egyik pitagoraszi, akkor p akkor és csak akkor kvadratikus maradék mod q, ha q kvadratikus maradék mod p; megfordítva, ha sem p, sem q nem pitagoraszi prím, akkor p akkor és csak akkor kvadratikus maradék mod q, ha q nem kvadratikus maradék mod p.[7]
A Z/p véges test felett, ahol p pitagoraszi prím, az x2 = −1 egyenletnek két megoldása van. Ez úgy is megfogalmazható, hogy a −1 kvadratikus maradék mod p. Megfordítva, az egyenletnek nincs megoldása a Z/p véges test felett, ha p páratlan prím ugyan, de nem pitagoraszi.[8]
Minden p pitagoraszi prímhez hozzárendelhető egy p csúcsú Paley-gráf, ami a modulo p számokat jelképezi; a gráfban két szám akkor és csak akkor szomszédos, ha különbségük kvadratikus maradék. Ez a definíció ugyanazt a szomszédsági relációt eredményezi a kivonandó számok sorrendjétől függetlenül, a pitagoraszi prímek azon tulajdonsága miatt, hogy a −1 kvadratikus maradék.[9]