Գնդային եռանկյուն, սֆերայի (գնդի) մակերեևույթին գտնվող երկրաչափական մարմին, կազմված երեք կետից և երեք մեծ շրջանների աղեղներից, որոնք միացված են զույգ առ զույգ։ Սֆերայի մակերևույթի երեք մեծ շրջանները մեկ կետում չեն հատվում և կազմում են 8 գնդային եռանկյուններ։
Գնդային եռանկայն տարրերի միջև առնչություններն ուսումնասիրում է գնդային եռանկյունաչափությունը։
Գնդային եռանկյան կողմը հաշվվում է կենտրոնական անկյան վրա հիմնված մեծությամբ։ Եռանկյան անկյունը չափվում է այն երկնիստ անկյան չափով, որի նիստերի վրա ընկած են անկյան կողմերը։ Այն գնդային եռանկյունը, որի բոլոր կողմերը փոքր են մեծ կիսաշրջանից, իսկ անկյունները փոքր են Π-ից, կոչվում են էյլերյան եռանկյուններ[1]։ Հաջորդիվ կուսումնասիրվեն են էյլերյան եռանկյունները։
Եռանկյունների հավասարության երեք հայտանիշներից բացի, այս եռնկունների համար կա նաև չորրորդ հայտանիշը։ Եռանկյունները հավասար են, եթե հավասար են նրանց երեք համապատասխան անկյունները[1]։ Էվկլիդեսյան երկրաչափության մեջ այդպիսի եռանկյունները նման են։ Գնդային երկրաչափության մեջ նմանության գործակիցը միշտ հավասար է մեկի, այդ պատճառով նրանում չկան նման, բայց իրար ոչ հավասար պատկերներ։
Տրված (ᐃABC) եռանյան համար բևեռային է կոչվում (ᐃA'B'C') այնպիսի եռանկյունը, որի A', B', C' գագաթները հանդիսանում են համապատասխանաբար BC, CA, AB կողմերի բևեռները, և A և A', B և B', C և C' կետերը ընկած են համապատասխանաբար BC, CA, AB կողմերի նկատմամբ նույն կողմում[2]։
Ցանկացած բևեռային եռանկյան համար տեղի ունի․; , որտեղ անկյունը՝ և կողմը՝ .
Գնդային եռանկյունը, որի բոլոր անկյունները ուղիղ են, բևեռային է ինքը իրեն։
Գնդային եռանկյան կողմերի համար տեղի ունի հետևյալ եռանկյան անհավասարությունը․ Ամեն մի կողմը փոքր է մյուս երկուսի գումարից և մեծ նրանց տարբերությունից[1]։
Գնդային եռանկյան անկյունների գումարը միշտ փոքր է և մեծ [1][5][6]։
մեծությունը կոչվում է գնդային ավելցուկ կամ գնդային էքսցես (խախտում)[3]։
Մակերեսը որոշվում է հետևյալ բանաձևով ։ Մակերեսի գնդային ավելցուկին համեմատական լինելը պայմանավորված է մակերևույթի երեք երկանկյուններով պատված լինելով, որոնք կազմում են գնդային եռանկյուն[1][7][8]։
Եթե գնդային եռանկյան երեք անկյուններից հանենք երկուսը, կստանանք -ց փոքր անկյուն[1]։
Ի տարբերություն հարթ եռանկյան, գնդայինը կարող է ունենալ երկու կամ երեք՝ ուղիղ կամ բութ անկյուն։
↑Вентцель М. К. Сферическая тригонометрия. — 2 изд, ИГКЛ, 1948, 115 с. (доступно на bookfi.org). Строгое доказательство пропорциональности площади сферическому избытку — на с. 82