Daftar bentuk matematika

Berikut ini adalah daftar dari beberapa bentuk matematis terdefinisi dengan baik .

Kurva rasional

[sunting | sunting sumber]

Keluarga dengan derajat variabel

[sunting | sunting sumber]

Kurva dari genus satu

[sunting | sunting sumber]

Kurva dengan genus lebih dari satu

[sunting | sunting sumber]

Keluarga kurva dengan genus variabel

[sunting | sunting sumber]

Kurva transendental

[sunting | sunting sumber]

Kurva yang dihasilkan oleh kurva lain

[sunting | sunting sumber]

Kurva ruang

[sunting | sunting sumber]

Permukaan dalam ruang 3 dimensi

[sunting | sunting sumber]

Permukaan bola semu

[sunting | sunting sumber]

See the list of algebraic surfaces.

Permukaan lainnya

[sunting | sunting sumber]

Fraktal acak

[sunting | sunting sumber]

Politop beraturan

[sunting | sunting sumber]

Berikut adalah tabel yang memperlihatkan ringkasan mengenai politop beraturan yang dihitung dengan dimensi.

Dimensi Cembung Takcembung Teselasi cembung Euklides Teselasi cembung hiperbolik Teselasi takcembung hiperbolik Teselasi Hiperbolik dengan sel takhingga
dan/atau gambar verteks
Politop abstrak
1 1 ruas garis 0 1 0 0 0 1
2 polygons star polygons 1 1 0 0
3 5 Platonic solids 4 Kepler–Poinsot solids 3 tilings
4 6 convex polychora 10 Schläfli–Hess polychora 1 honeycomb 4 0 11
5 3 convex 5-polytopes 0 3 tetracombs 5 4 2
6 3 convex 6-polytopes 0 1 pentacombs 0 0 5
7+ 3 0 1 0 0 0

There are no nonconvex Euclidean regular tessellations in any number of dimensions.

Polytope elements

[sunting | sunting sumber]

The elements of a polytope can be considered according to either their own dimensionality or how many dimensions "down" they are from the body.

  • Puncak, sebuah elemen dimensi 0
  • Sisi, sebuah elemen dimensi 1
  • Wajah, sebuah elemen dimensi 2
  • Sel, sebuah elemen dimensi 3
  • Hipersel, sebuah elemen dimensi 4
  • Facet, sebuah (n-1)
  • Ridge, sebuah elemen dimensi (n-2)
  • Peak, sebuah elemen dimensi (n-3)

For example, in a polyhedron (3-dimensional polytope), a face is a facet, an edge is a ridge, and a vertex is a peak.

  • Vertex figure: not itself an element of a polytope, but a diagram showing how the elements meet.

The classical convex polytopes may be considered tessellations, or tilings, of spherical space. Tessellations of euclidean and hyperbolic space may also be considered regular polytopes. Note that an 'n'-dimensional polytope actually tessellates a space of one dimension less. For example, the (three-dimensional) platonic solids tessellate the 'two'-dimensional 'surface' of the sphere.

Dimensi nol

[sunting | sunting sumber]

Politop regular satu dimensi

[sunting | sunting sumber]

Terdapat hanya satu politop dalam 1 dimensi, yang batasnya terdapat dua titik akhir ruas garis, diwakili oleh simbol Schläfli kosong {}.

Politop regular dua dimensi

[sunting | sunting sumber]
Merosot (bola)
[sunting | sunting sumber]

Takcembung

[sunting | sunting sumber]

Politop regular tiga dimensi

[sunting | sunting sumber]

Degenerate (spherical)

[sunting | sunting sumber]

Takcembung

[sunting | sunting sumber]

Tessellations

[sunting | sunting sumber]
Euclidean tilings
[sunting | sunting sumber]
Hyperbolic tilings
[sunting | sunting sumber]
Hyperbolic star-tilings
[sunting | sunting sumber]

Four-dimensional regular polytopes

[sunting | sunting sumber]

Degenerate (spherical)

[sunting | sunting sumber]

Non-convex

[sunting | sunting sumber]

Tessellations of Euclidean 3-space

[sunting | sunting sumber]

Degenerate tessellations of Euclidean 3-space

[sunting | sunting sumber]

Tessellations of hyperbolic 3-space

[sunting | sunting sumber]

Five-dimensional regular polytopes and higher

[sunting | sunting sumber]
Simplex Hypercube Cross-polytope
5-simplex 5-cube 5-orthoplex
6-simplex 6-cube 6-orthoplex
7-simplex 7-cube 7-orthoplex
8-simplex 8-cube 8-orthoplex
9-simplex 9-cube 9-orthoplex
10-simplex 10-cube 10-orthoplex
11-simplex 11-cube 11-orthoplex

Tessellations of Euclidean 4-space

[sunting | sunting sumber]

Tessellations of Euclidean 5-space and higher

[sunting | sunting sumber]

Tessellations of hyperbolic 4-space

[sunting | sunting sumber]

Tessellations of hyperbolic 5-space

[sunting | sunting sumber]

Apeirotopes

[sunting | sunting sumber]

Abstract polytopes

[sunting | sunting sumber]

Non-regular polytopes

[sunting | sunting sumber]

2D with 1D surface

[sunting | sunting sumber]

Polygons named for their number of sides

Uniform polyhedra

[sunting | sunting sumber]

Duals of uniform polyhedra

[sunting | sunting sumber]

Johnson solids

[sunting | sunting sumber]

Other nonuniform polyhedra

[sunting | sunting sumber]

Spherical polyhedra

[sunting | sunting sumber]

Honeycombs

[sunting | sunting sumber]
Convex uniform honeycomb
Dual uniform honeycomb
Others
Convex uniform honeycombs in hyperbolic space

Regular and uniform compound polyhedra

[sunting | sunting sumber]
Polyhedral compound and Uniform polyhedron compound
Convex regular 4-polytope
Abstract regular polytope
Schläfli–Hess 4-polytope (Regular star 4-polytope)
Uniform 4-polytope
Prismatic uniform polychoron

Honeycombs

[sunting | sunting sumber]

5D with 4D surfaces

[sunting | sunting sumber]
Five-dimensional space, 5-polytope and uniform 5-polytope
Prismatic uniform 5-polytope
For each polytope of dimension n, there is a prism of dimension n+1.[butuh rujukan]

Honeycombs

[sunting | sunting sumber]

Six dimensions

[sunting | sunting sumber]
Six-dimensional space, 6-polytope and uniform 6-polytope

Honeycombs

[sunting | sunting sumber]

Seven dimensions

[sunting | sunting sumber]
Seven-dimensional space, uniform 7-polytope

Honeycombs

[sunting | sunting sumber]

Eight dimension

[sunting | sunting sumber]
Eight-dimensional space, uniform 8-polytope

Honeycombs

[sunting | sunting sumber]

Nine dimensions

[sunting | sunting sumber]
9-polytope

Hyperbolic honeycombs

[sunting | sunting sumber]

Ten dimensions

[sunting | sunting sumber]
10-polytope

Dimensional families

[sunting | sunting sumber]
Regular polytope and List of regular polytopes
Uniform polytope
Honeycombs

Geometry and other areas of mathematics

[sunting | sunting sumber]
Ford circles

Glyphs and symbols

[sunting | sunting sumber]

Referensi

[sunting | sunting sumber]
  1. ^ "Courbe a Réaction Constante, Quintique De L'Hospital" [Kurva Reaksi Konstan, Quintic l'Hospital]. 
  2. ^ https://web.archive.org/web/20041114002246/http://www.mathcurve.com/courbes2d/isochron/isochrone%20leibniz. Diarsipkan dari versi asli tanggal 14 November 2004.  Tidak memiliki atau tanpa |title= (bantuan)
  3. ^ https://web.archive.org/web/20041113201905/http://www.mathcurve.com/courbes2d/isochron/isochrone%20varignon. Diarsipkan dari versi asli tanggal 13 November 2004.  Tidak memiliki atau tanpa |title= (bantuan)
  4. ^ Ferreol, Robert. "Spirale de Galilée". www.mathcurve.com. 
  5. ^ Weisstein, Eric W. "Seiffert's Spherical Spiral". mathworld.wolfram.com. 
  6. ^ Weisstein, Eric W. "Slinky". mathworld.wolfram.com. 
  7. ^ "Monkeys tree fractal curve". Diarsipkan dari versi asli tanggal 21 September 2002. 
  8. ^ WOLFRAM Demonstrations Project http://demonstrations.wolfram.com/SelfAvoidingRandomWalks/#more. Diakses tanggal 14 June 2019.  Tidak memiliki atau tanpa |title= (bantuan)
  9. ^ Weisstein, Eric W. "Hedgehog". mathworld.wolfram.com. 
  10. ^ "Courbe De Ribaucour" [Ribaucour curve]. mathworld.wolfram.com.