Ci sono due estensioni supersimmetriche (con N = 1) dell'algebra di Virasoro, chiamate algebra di Neveu-Schwarz e algebra di Ramond. Queste due teorie sono simili a quella dell'algebra Virasoro.
I.M. Gel'fand, D.B. Fuks, The cohomology of the Lie algebra of vector fields in a circle Funct. Anal. Appl. , 2 (1968) pp. 342–343 Funkts. Anal. i Prilozh. , 2 : 4 (1968) pp. 92–93
V.G. Kac, Highest weight representations of infinite dimensional Lie algebras , Proc. Internat. Congress Mathematicians (Helsinki, 1978),
V.G. Kac, A.K. Raina, Bombay lectures on highest weight representations, World Sci. (1987) ISBN 9971503956.
V.K. Dobrev, Multiplet classification of the indecomposable highest weight modules over the Neveu-Schwarz and Ramond superalgebras, Lett. Math. Phys. {\bf 11} (1986) 225-234 & correction: ibid. {\bf 13} (1987) 260.
I.M. Krichever, S.P. Novikov, Algebras of Virasoro type, Riemann surfaces and structures of the theory of solitons, Funkts. Anal. Appl. , 21:2 (1987) p. 46–63.
V.K. Dobrev, Characters of the irreducible highest weight modules over the Virasoro and super-Virasoro algebras, Suppl. Rendiconti Circolo Matematici di Palermo, Serie II, Numero 14 (1987) 25-42.
M. Schlichenmaier, Differential operator algebras on compact Riemann surfaces H.-D. Doebner (ed.) V.K. Dobrev (ed.) A.G Ushveridze (ed.) , Generalized Symmetries in Physics, Clausthal 1993 , World Sci. (1994) p. 425–435