Disuguaglianza di Fano

Nella teoria dell'informazione, la Disuguaglianza di Fano mette in relazione l'equivocazione di un canale rumoroso con la probabilità d'errore nella decodifica di un simbolo ricevuto. È stata scoperta e dimostrata dallo scienziato Robert Fano.

Disuguaglianza di Fano

[modifica | modifica wikitesto]

Se le variabili aleatorie e rappresentano i simboli (estratti da un alfabeto di M possibili simboli) in ingresso ed in uscita ad un canale rumoroso ed hanno una densità di probabilità congiunta , il canale è affetto da una probabilità di errore

e la disuguaglianza di Fano si esprime allora come

in cui

è l'entropia condizionata, detta equivocazione in quanto rappresenta la quantità d'informazione media persa nel canale; e

è l'entropia binaria corrispondente ad una sorgente binaria stazionaria e senza memoria che emette il simbolo 1 con probabilità ed il simbolo 0 con probabilità .

La disuguaglianza di Fano fornisce quindi un limite inferiore alla probabilità d'errore; si mostra infatti che se l'entropia di X eccede la capacità del canale è impossibile che l'informazione trasmessa attraverso il canale sia ricevuta con probabilità d'errore arbitrariamente piccola.

Dimostrazione

[modifica | modifica wikitesto]

Siano e due variabili casuali e un estimatore di ottenuto dall'osservazione di . Sia la probabilità di errore.

Si consideri la variabile casuale binaria tale che:

che ha quindi una distribuzione del tipo .

Si consideri ora l'entropia:

è funzione di e e di conseguenza di e , da cui .
Si ottiene quindi

sfruttando la disuguaglianza .

A questo punto è possibile riscrivere come segue:

per il quale il primo termine del membro di destra si annulla perché dato l'incertezza sulla conoscenza di è nulla, mentre per il secondo, sapendo a priori di avere un errore, vale la disuguaglianza

dove è il numero di valori possibili che la variabile può assumere. Sostituendo in si ottiene:

dimostrando quindi l'asserto.

  • R. Fano, Transmission of information; a statistical theory of communications. Cambridge, Mass., M.I.T. Press, 1961.

Voci correlate

[modifica | modifica wikitesto]
  Portale Ingegneria: accedi alle voci di Wikipedia che trattano di ingegneria