In geometria della tassellazione per figura replicante (o rettile[1] dall'inglese rep-tile[2]) si intende una figuraautosimile, che si ripete[3], per la proprietà di potersi scomporre in tasselli simili all'originale.
I tasselli replicanti furono chiamati "rettili", per via di un gioco di parole in inglese, dal matematico Solomon Golomb che per primo li studiò nel 1962. Una figura replicante è chiamata rep- se scomposta in copie uguali. Se invece la scomposizione è con forme simili non tutte uguali allora si parla di replicazione irregolare e di irrep-n[4]. L'ordine di una forma replicante, che si utilizzino o meno tessere uguali, è il numero più piccolo possibile di tasselli utilizzato nella scomposizione.[5]
Gli unici poligoni riproducibili di ordine 2 conosciuti sono il triangolo rettangolo isoscele e il parallelogramma le cui misure dei lati sono nel rapporto . Le misure degli angoli interni del parallelogramma non influenzano questa proprietà. I formati della carta (A1,A2, A3, A4,...), utilizzati comunemente dalle nostre stampanti, utilizzano questa proprietà. I fogli di dimensioni diverse sono tutti simili e quindi, per esempio, dividendo in due un foglio A3 se ne ottengono due A4.
Analogamente a quanto visto precedentemente, nel caso particolare dato un numero intero è possibile costruire un parallelogramma rep-. È infatti sufficiente costruire un parallelogramma con rapporto dei due lati e suddividere i suoi lati maggiori in parti uguali e poi congiungere gli opposti punti a due a due. Gli parallelogrammi così ottenuti avranno rapporto lati
e saranno perciò simili all'originale. Un rep- può essere frammentato all'infinito fino a formare un frattale, come per esempio il triangolo di Sierpinski
Solomon Golomb ha individuato tre figure non poligonali rep-4 non costruibili in un numero finito di operazioni. Ognuna di esse è costituita da una diversa sovrapposizione di triangoli equilateri decrescenti in progressione geometrica di ragione
^(EN) Martin Gardner, Rep-Tiles, in The Colossal Book of Mathematics: Classic Puzzles, Paradoxes, and Problems, New York, W. W. Norton, 2001, pp. 46–58, ISBN9780393020236.